Evidence that the Diffie-Hellman Problem is as Hard as
Computing Discrete Logs

Jonah Brown-Cohen

1 Introduction

The Diffie-Hellman protocol was one of the first methods discovered for two people, say
Alice and Bob, to agree on a shared secret key despite the fact that any of the messages
sent between the two of them might be intercepted. That is, the goal of the protocol is to
make it impossible to determine the shared secret key for some third party, say Eve, who
sees all the communication between Alice and Bob. Let G = (g) be a cyclic group with
generator g. To perform the Diffie-Hellman protocol, first Alice chooses a secret number
a < |G|, and Bob chooses a secret b < |G|. Then Alice sends g to Bob, and Bob sends g
to Alice. Now, Alice computes (¢°)* = ¢?, and Bob computes (¢*)* = ¢**. Thus, the two
of them have agreed on a shared secret group element ¢*° € G.

The question then is: is it possible for the evesdropper Eve to determine g*® from the
communications sent between Alice and Bob? Note that there are only two messages sent
between Alice and Bob, namely the two group elements ¢* and g°. Thus the problem be-
comes: given {g%, ¢’} compute ¢, This is the Diffie-Hellman problem, and the assumption
that it is hard (in the sense that no efficient algorithm exists) is central in many crypto-
graphic protocols. One of the reasons for this assumption has to do with the relationship
of the Diffie-Hellman problem to the problem of computing discrete logarithms in a cyclic
group G. Note that if it were possible to efficiently compute the discrete logarithm a of ¢¢,
then an attacker could easily solve the Diffie-Hellman problem by first computing a from
g%, and then calculating (¢?)* = ¢®. Thus, the Discrete Log problem is at least as hard as
the Diffie-Hellman problem.

The other direction of this relationship i.e. whether the Diffie-Hellman problem is as
hard as the Discrete Log problem, is a fundamental open question in cryptography. Since
the Discrete Log problem is generally thought to be hard, a reduction from Discrete Log
to Diffie-Hellman would give strong evidence that the Diffie-Hellman protocol is secure.
One of the first steps toward such a reduction was made by den Boer in [1]. He showed
that for primes p satisfying a certain condition, there is a reduction from Discrete Log to
Diffie-Hellman in the group Z;. The condition required was that ¢(p — 1) had only small
prime factors. Here ¢(n) is Euler’s Totient function which counts the number of positive
integers less than n that are coprime to n. This result was later generalized to all groups by
Maurer in [2] using elliptic curves, and requiring a different number-theoretic assumption.
In this paper, we will present Maurer’s main result, along with the necessary background
from number theory.

2 Computation with A Diffie-Hellman Oracle

To give a reduction from the Discrete Log Problem to the Diffie-Hellman problem, we must
show that an efficient algorithm that solves the Diffie-Hellman problem can be used to
efficiently solve the Discrete Log Problem. We make the concept of an efficient algorithm
that solves the Diffie-Hellman problem formal in the following definition.

Definition 2.1. A Diffie-Hellman oracle (DH-oracle) O for a cyclic group G = (g) is an
algorithm that given g%, ¢* € G outputs g% in time polynomial in log|G|. We will write

O(ga7gb) — gab.

Since the D H-oracle operates on the exponent of a generator of G, we introduce some
extra notation to simplify the formulas for the remainder of the paper.

Definition 2.2. For a cyclic group G = (g) define exp,(z) = g°.

The next step toward constructing a reduction from Discrete Log to Diffie-Hellman is to
understand the computational power of a DH-oracle. The following lemma demonstrates
what can be computed in the exponent of a generator g by a D H-oracle.

Lemma 2.3. Let G = (g) be a cyclic group of prime order p and let f(x) be any rational
function over F,. Then given g* € G, a DH-oracle O can be used to compute ¢/@) in time
polynomial in log |G| and the size of the rational function f.

Proof. Note clearly ¢ - ¢® = ¢g*t?, so it is possible to add exponents in G. The inversion
operation in the group can be used for subtraction of exponents because
by— —b —b
g (") =gt gl ="
Since O(g?, g*) = g* a DH-oracle can be used to multiply exponents. To achieve arbitrary

powers of exponents in G, k calls to the oracle O can be used for repeated squaring of the
exponent to compute exp, (an) for any k. Then by simply writing a number n in binary as

n=>"byg+b-24by- 22+ ... +0b 2"

we can compute exp,(a") by simply adding up the exponents expg(awbi) for ¢ from 0 to
k. Note that since k = O(logn) this algorithm only requires O(k?) = O(log®n) calls to
the oracle. Since we can now compute subtraction, addition, multiplication and arbitrary
powers of the exponent, we can compute any polynomial exp,(p(r)) given input g*.

Next note that 2=t = 27=2 (mod p). Since G is cyclic of order p we have

expg(afl) = expg(xpfl)

Thus, we can compute inverses of exponents in G. Thus, for any rational function f(z) =

% where p and ¢ are polynomials we can compute

expy(f(x)) = expy(p(z) - g() ")

Finally, note that all the above operations require a polynomial (in the size of f) number of
group operations and calls to O. Since by assumption O runs in polynomial time in log|G],
the function ¢f®) can be computed in time polynomial in the size of f and log |G|. O

An immediate consequence of the lemma is that any function f(z) that can be com-
puted by an algorithm that uses only addition, subtraction, multiplication, division and
exponentiation can be used, along with a DH-oracle, to compute ¢g/(*) from ¢*. Below we
state a corollary of this fact that will be useful in the reduction.

Corollary 2.4. Let G = (g) be a group with prime order p. Given an element g* € G, a
DH-oracle O can be used to efficiently compute g* where 2> = z (mod p).

Proof. As noted in [2] there exist algorithms for computing square roots mod p that only use
the aforementioned operations. So by Lemma 2.3 square roots can be computed efficiently.
O

Since we will be exploiting elliptic curves to give our reduction, we will also need a
corollary regarding computing in elliptic curve groups using a D H-oracle.

Corollary 2.5. Let E(F)) be an elliptic curve and let (z1,y1), (x2,y2) be points on E(F,).
Let (x3,y3) = (x1,y1) + (x2,y2). Then given the pairs (g**, g¥*) and (g*2, g¥?) a DH-oracle
can be used to efficiently compute (g*3, g¥3).

Proof. As before, the algorithm for adding points on an elliptic curve only requires comput-
ing rational functions over the input coordinates. Thus by Lemma 2.3 the coordinates of a
sum over an elliptic curve can be computed efficiently in the exponent by a D H-oracle. [

We now move on in the next section where we will introduce the number-theoretic
assumption that we will require for the reduction to work.

3 Smooth Numbers

The central assumption for our reduction has to do with the smoothness of the order of
certain elliptic curve groups. First we give the formal definition of a smooth number.

Definition 3.1. An natural number n is said to be S-smooth if p < S for every prime
factor p of n.

The above definition says that a number n is smooth if all of its prime factors are
sufficiently small. An important question, that is also relevant to our reduction, regards
the distribution of smooth numbers in the natural. We will first give a known estimate of
the density of smooth numbers in N, followed by a discussion of the density condition that
we require.

Definition 3.2. For n,S € N we define ¢(n, S) to be the number of S-smooth numbers
m < n.

In [3] the authors give several well-known estimates on (n,S). We provide a repre-
sentative example below to give an idea of the type of bounds that exist on the density of
smooth numbers.

Proposition 3.3. Let u = iggg Then for S > (logn)'*€ the density of S-smooth numbers
s given by

P(n,S) = i O

Unfortunately, this is not the type of estimate that will be useful for our reduction. A
key component of the reduction is the existence of an elliptic curve E(F,) with smooth
order. We know that for a curve over I, the possible group orders are given by

p—2p+1<#EF,) <p+2,p+1

Further, as noted in [2], it has been shown that for each number n in the above interval,
there is a cyclic elliptic curve of order n. Unfortunately it is not known how to construct
such a curve.

In the next section, the reduction we give assumes that for each (large enough) prime
p there exists a cyclic elliptic curve E(F,) with smooth order. Further, it requires that we
explicitly construct such a curve. Of course, this is not known to be possible. However, if
we assume that there exists a number n in the interval

p—2/p+1<n<p+2,p+1

such that n is S-smooth, then we know that there exists an elliptic curve that has the
desired properties. Then, all that is required for the reduction to work is some sort of
external advice which tells us the coefficients A and B of the desired curve.

4 The Reduction

The main result from this section is the reduction given in [2] from the Discrete Log Problem
to the Diffie-Hellman problem under the assumption that there exists an elliptic curve over
[F, with smooth order. The key point is that we transfer the question of computing discrete
logs in G into a question about discrete logs over an elliptic curve E(F,). We then are able
to solve this new problem efficiently because #FE(F,) is smooth.

Theorem 4.1. Let G = (p) be a cyclic group of prime order p and let O be a DH-oracle
for G. Suppose we are given a cyclic elliptic curve E(Fy), such that #E(F,) is S-smooth.
Then O can be used to compute discrete logarithms in G in time polynomial in logp and S.

Proof. Throughout the proof we will make extensive use of Lemma 2.3 to compute rational
functions in the exponent using the D H-oracle. Suppose we are given g* € GG and wish to
determine a. Let the elliptic curve E be given by the equation y? = 23 + Az + B. We first
wish to map a to a point on E(F,). To do so, let exp,(zo) = exp,(a + d) for a randomly
selected integer d. Note that xg is the z-coordinate of a point on the curve if and only if
z = mg + Axo+ B is a quadratic residue mod p. To test if z is a quadratic residue we simply
check if
zP70/2 =1 (mod p).

Note that z is a rational function of xg, and so by Lemma 2.3 we can use O to compute
expg(z). Then, since the test for a quadratic residue is also a rational function, we can
compute that zq is the z-coordinate of a point on the curve if and only if

expg(z(p_l)ﬂ) = expg(l) =g.

If x¢ does not pass this test, then we randomly select a new d and try again. Since half the
elements in I, are quadratic residues mod p, the expected number of times that we must
retry this test is 2.

Now that we have found a z which is a quadratic residue mod p, we know that xq is an
r-coordinate on E(F,). By Corollary 2.4 we can use O to compute exp,(yo) such that

ye = z=as + Azg+ B (mod p)

This yields a pair of points (¢*°, ¢%) such that (xo,y0) € E(F,). Let P € E(F,) be a
generator (recall F(F)) is cyclic). Then we have that for some integer n

(zo,y0) =n-P

Note that if we can compute n, then we will be able to compute xy. Further, since zg = a+d,
we will then be able to compute a because we know d. Thus, all that remains is to find n.

Now we use the fact that m = #FE(F,) is S-smooth. Let q1,qo,...,qr be the prime
factors of m. For the sake of simplicity we will assume that the prime factors are distinct,
though the proof can easily be extended to the case where each factor occurs with some
multiplicity. Note that all we really need to know is the value of n (mod m) because E(F))
is cyclic of order m. Further, note that if we know n; = n (mod g¢;) for each j, then we can
compute n (mod m) via the Chinese Remainder Theorem.

For each j note that since n; =n (mod g;),

(5)=n () i

Further, since E(IF,) is cyclic of order m this implies that

(5) ron(z) 7

Thus to determine n; we first use Corollary 2.5 to compute (g%, g¥) from (¢g*°, g%°) where

(z,y) =n (%) - P. In particular, since the corollary allows us to add points on an elliptic

curve in the exponent, we can simply use the double-then-add algorithm on (g*°, g%°) to
compute (g%, g¥) in O(log %) = O(logm) steps.
Next we simply brute force search for the value of n; using (1) to check if we have found

it. That is, let
m
@u%):t(>'P
qj

for each positive integer t. By Corollary 2.5 we can compute (g*t, g¥*) for each subsequent
value of ¢ > 0 and check if (¢”¢, g¥*) = (¢9%, g¥). When we find a match, we know that ¢t = n;.
Note computing (g*t, g¥*) at each subsequent step amounts to doing just one elliptic curve
addition in the exponent. Since m is S-smooth, we have that ¢; < S, which implies that
n; < S. That is, for each j we must only search over at most S values to find n;.

As noted above, once we have found each n; we can use the Chinese Remainder Theorem
to compute n, and once we have n we can compute the desired discrete log a. Finally, it is
easy to check that all the steps described above use a polynomial (in S and log p) number
of group operations and calls to the oracle O. O

As mentioned in the previous section, this theorem relies on both the existence and the
explicit construction of a cylic elliptic curve with smooth order. If we assume that for large
enough p there exists an S-smooth number n in the interval [p — 2\/p + 1,p + 2,/p + 1],

then we know such a curve exists. It remains unkown how to construct the curve, so we
also require external advice giving the curve explicitly in order for the reduction to hold.

From an alternate viewpoint, suppose there are certain values of p for which it is possible
to explicitly construct an elliptic curve E(F,) with known order (e.g. certain super-singular
curves). Then, for values of p for which these explicitly constructible curves have smooth
order, the reduction can be done without any external advice. Thus, for a group G with
order p equal to one of these special values, the Diffie-Hellman problem is at least as hard
as the Discrete Log Problem.

5 Conclusion

It is worthwhile to note that the proof given in the previous section is just a generalization
using elliptic curves of the reduction given in [1]. In that paper, den Boer simply moves
the discrete log calculation for a group G of prime order p into the field F,. Then, under
the assumption that p — 1 is smooth, an identical application of the Chinese Remainder
Theorem can be used to efficiently compute the discrete log in F,,. Of course this only works
for certain primes p.

As we showed above, in [2] Maurer generalizes den Boers result simply by passing to the
elliptic curve group E(F),) instead of the finite field F,,. The relative advantage of Maurer’s
method is that it seems as though it may work for all group orders. If, for example, a method
were discovered for efficiently constructing a cyclic elliptic curve over), with smooth order,
then Maurer’s theorem would immediately imply that the Diffie-Hellman problem is as hard
as the Discrete Log Problem in any group. Though neither paper gives a competely general
reduction from Discrete Log to Diffie-Hellman, they both should be seen as strong evidence
that the Diffie-Hellman problem is hard.

References

[1] den Boer, ”Diffie-Hellman is as strong as discrete log for certain primes,” Crypto 1988

[2] Maurer, " Towards the equivalence of breaking the Diffie-Hellman protocol and comput-
ing discrete logarithms,” CRYPTO 1994

[3] David Naccache, Igor Shparlinski, ”Divisibility, Smoothness and Cryptographic Appli-
cations”, http://eprint.iacr.org/2008/437.pdf

