
An Overview of Elliptic Curve Primality Proving

Frank Li

December 15, 2011

1 Introduction

Primes are of fundamental importance in number theory, and primality testing is one of the
oldest problems in mathematics. Various algorithms have been presented over the past two
millenia, ever since Eratosthenes detailed his eponymous sieve in 274 B.C. After important
theoretical advances by Fermat, Euler, Legendre, and Gauss in the seventeeth and eighteenth
centuries, the rise of computational approaches to primality testing began in the 1970’s.

Early modern algorithms were closely linked to factoring, causing the algorithms to be slow
or only work for numbers of special forms. Miller (1976) [11] gave a deterministic general-
purpose polynomial-time algorithm, but his result assumed the unproven Extended Riemann
Hypothesis. Solovay-Strassen (1977) [16] and Rabin (1980) [15] independently presented
probabilistic polynomial-time primality tests. Adelman-Pomerance-Rumely (1983) [1] and
Cohen-Lenstra (1984) [7] gave nearly-polynomial-time deterministic tests that did not rely on
unproven assumptions. These tests could not prove that a number was prime; instead, they
would generate either a proof of compositeness or conclude that the input was a probable
prime.

In contrast, primality proving algorithms generate a certificate of primality, in which the
primality of a large number is reduced to the primality of a smaller number. This forms
a chain of primes that can then be verified in polynomial time. Pratt (1975) [14] first
proved such certificates exist but gave no efficient implementation. Then Goldwasser-Kilian
(1986) [8] exhibited a randomized algorithm that generates a primality certificate in ex-
pected polynomial time on almost all inputs. This approach used elliptic curves and laid
the framework for elliptic curve primality proving (ECPP). Atkin (1986) [4] improved this
result and Adleman-Huang (1992) [2] modified it to run in expected polynomial time on all
inputs. More recently, Agrawal-Kayal-Saxena (2002) [3] resolved a long-standing open ques-
tion by describing a deterministic polynomial-time proving algorithm, at last establishing
that PRIMES is in P.

Of these algorithms, ECPP has seen the greatest success in proving the primality of random
large numbers. Specialized tests such as the Lucas-Lehmer test and Fermat test have yielded
the largest primes known, but these are all of a special form. For general numbers, the best
AKS-class tests have yielded Õ(log4 n) time algorithms [6], on par with the asymptotic

1

An Overview of Elliptic Curve Primality Proving

heuristic bound on fast ECPP [12]. However, the constants in AKS-class tests are much
higher than in ECPP, and in practice ECPP is the fastest known algorithm for proving the
primality of general numbers.

This paper explores the inaugural ECPP algorithm presented by Goldwasser-Kilian [8] as
well as later improvements on the algorithm.

2 Background

Goldwasser-Kilian’s ECPP algorithm relies on a result from Lenstra [10], whose work on
factoring using elliptic curves yielded insight into primality proving.

Theorem 1. (Distribution of orders of random elliptic curves [10]):
Let p > 5 be a prime, and let S ⊆ {p + 1− b√pc, . . . , p + 1 + b√pc}. Let A,B be randomly
chosen from Fp. Then there exists a fixed constant k such that,

Pr(#EA,B(Fp) ∈ S) >
k

log p
· |S| − 2

2b√pc+ 1

In other words, if S is some subset of numbers in a small interval satisfying a certain property
and |S| > 2, the order of a random elliptic curve is at least O(1/ log p) times as likely to
satisfy that property as a random element in this interval. Note that this interval is about
half the Hasse interval. We will use this theorem in our analysis of the running time of the
ECPP algorithm.

We now establish notation and recall a basic result for elliptic curve operations over the ring
Zn.

Lemma 2. (Elliptic curve addition over Zn [8]):
Let n be an integer not divisible by 2 or 3. Let p > 3 be a prime divisor of n, and
let 4A3 + 27B2 6= 0 mod p. For any x ∈ Zn, define xp = x mod p ∈ Fp, and for any
L = (x, y) ∈ EA,B(Zn), define Lp = (xp, yp) ∈ EA,B(Fp) and ∞p = ∞ ∈ EA,B(Fp). For any
L,M ∈ EA,B(Zn), if L + M is defined, then (L + M)p = Lp + Mp.

The heart of Goldwasser-Kilian’s approach is the following theorem:

Theorem 3. (Elliptic curve primality proof [9]):
Let n be an integer not divisible by 2 or 3. Let A,B ∈ Zn such that (4A3 + 27B2, n) = 1,
and let L 6= ∞ ∈ EA,B(Zn). If there exists a prime q > (4

√
n + 1)2 such that qL = ∞, then

n is prime.

Proof. By contradiction. Suppose n is composite. Then there exists a prime p > 3 dividing
n, so that p ≤

√
n. Note that 4A3 + 27B2 6= 0 mod p, since otherwise (4A3 + 27B2, n) 6= 1.

Therefore Lp ∈ EA,B(Fp), and qLp = (qL)p =∞p =∞ by Lemma 2. So the order of Lp must
divide q, and since Lp 6= ∞ and q is prime, it follows that that the order of Lp must equal
q. But by Hasse’s Theorem, the order of Lp ≤ #EA,B(Fp) ≤ (

√
p + 1)2 ≤ (4

√
n + 1)2 < q, a

contradiction. So n must be prime. �

2

An Overview of Elliptic Curve Primality Proving

3 Algorithm

The ECPP algorithm follows closely from Theorem 3. At a high level, the following algo-
rithms are employed:

Algorithm 4. Generate-Curve(p):

1. Randomly select A,B
R←− Fp until (4A3 + 27B2, p) = 1, p + 1− b√pc ≤ #EA,B(Fp) ≤

p + 1 + b√pc, and #EA,B(Fp) is even. (Note: we may compute #EA,B(Fp) efficiently
using Schoof’s algorithm.)

2. Set q = #EA,B(Fp)/2. If q is divisible by 2 or 3, retry from step 1.

3. Run a probabilistic primality test on q for 2 log p trials. If a trial ever returns ”compos-
ite,” retry from step 1. (Note: we may use the Miller-Rabin [15] or Solovay-Strassen
[16] tests, or any other probabilistic test with an error rate that decreases exponentially
as a function of log p.)

4. Return (A,B), q.

Algorithm 5. Find-Point(p, q, (A,B)):

1. Randomly select x
R←− Fp until x3 + Ax + B is a quadratic residue in Fp.

2. Compute the square roots of x3 + Ax + B and set y to be one of the square roots
randomly. Let L = (x, y) ∈ EA,B(Fp).

3. If qL 6=∞, retry from step 1.

4. Return L.

Algorithm 6. Prove-Prime(p):

1. Let i := 0, p0 = p, and lowerbound = max(2(log p)C/ log log log p
, 37), where C is some

constant such that the deterministic algorithm in step 3 will run in polynomial time
in log p.

2. While pi > lowerbound, do:

(a) (Ai, Bi), pi+1 ← Generate-Curve(pi).

(b) Li ← Find-Point(pi, pi+1, (A,B))

(c) i := i + 1.

(d) If any of the pi is divisible by 2 or 3, or if i ≥ (log p)log log p, break out of the loop
and retry from step 1.

3. Use a deterministic algorithm to test if pi is prime. If pi is not prime, retry from step
1. (Note: we may use either Adelman-Pomerance-Rumely [1] or Cohen-Lenstra [7] for
this test.)

3

An Overview of Elliptic Curve Primality Proving

4. Return ((A0, B0), L0, p1), . . . , ((Ai−1, Bi−1), Li−1, pi).

Algorithm 7. Check-Prime(p0, ((A0, B0), L0, p1), . . . , ((Ai−1, Bi−1), Li−1, pi)):

1. Reject if pi > max(2(log p)C/ log log log p
, 37).

2. Use a near-polynomial time deterministic algorithm to test if pi is prime. If pi is not
prime, reject. (Note: again, we may use either Adelman-Pomerance-Rumely (1983) or
Cohen-Lenstra (1984).)

3. For each j from 0 to i− 1 inclusive, reject if any of the following assertions fail:

(a) 2 - pj
(b) 3 - pj
(c) (4A3

j + 27B2
j , pj) = 1

(d) pj+1 > (4
√
pj + 1)2

(e) Lj 6=∞
(f) pj+1Lj =∞

4. Accept p0 as prime.

4 Analysis

4.1 Overview

The overall approach of Goldwasser-Kilian is to reduce the question of the primality of p to
the question of the primality of a smaller prime q, where q ≤ p

2
+ o(p). This results in a

chain of primes p0, p1, . . . , pi, where p0 = p is the original prime, and pi is small enough to
be verified deterministically in polynomial time. This chain is a certificate of primality for p
and can be verified quickly in polynomial time. The following subsections with discuss each
of the presented algorithms in greater detail.

4.2 Main reduction step

Generate-Curve generates a random elliptic curve EA,B(Fp) with order 2q, where q is a
probable prime as determined by a probabilistic primality test. This is done by repeatedly
sampling A and B randomly from Fp until the conditions hold. Note that we require the
probabilistic primality test to err with an exponentially small probability (say, 1/p, where
p is the prime candidate). Nonetheless, the probabilistic test may be incorrect; we discuss
later how to resolve such errors. Assume for now that q actually is prime.

Find-Point takes an output of Generate-Curve and finds a point L ∈ EA,B(Fp) such
that the order of L is q. This is easily done by randomly sampling L from EA,B(Fp), since
about half the points will have order q.

4

An Overview of Elliptic Curve Primality Proving

4.3 Primality proving

Prove-Prime repeatedly call the reduction algorithms to generate a chain of primes that
forms the certificate of primality of p = p0. The loop terminates when the final prime is
small enough to be verified deterministically in time polynomial in log p. Note that it is
easily verified that such a constant C may always be found [9]. In the rare cases that the
probabilistic test in Generate-Curve was incorrect, the main loop would not terminate,
as the algorithm is trying to prove that a composite number is prime. The bound on the
loop index i < (log p)log log p in step 2(d) handles this case gracefully and does not increase
asymptotic running time [9].

4.4 Certificate checking

Check-Prime constitutes a fast deterministic verification algorithm of a certificate gener-
ated by Prove-Prime. It is easy to see that if Check-Prime accepts a prime, then pi
is prime, and by Theorem 3, pj prime implies pj−1 prime. So it suffices to show that all
certificates generated by Prove-Prime satisfy the conditions required in the main loop.

The first two requirements that pj not be divisible by 2 or 3 are ensured by the loop in
Prove-Prime. Generate-Curve ensures that (4A3

j + 27B2
j , pj) = 1, hence satisfying

requirement (c). Since #EAj ,Bj
(Fpj) ≥ (

√
pj − 1)2 by Hasse’s Theorem, we have

pj+1 ≥ (
√
pj − 1)2/2

> (4
√
pj + 1)2

for all pj > 37. But Prove-Prime ensures that pj > 37, or otherwise it can be easily
checked whether pj is prime. This satisfies requirement (d). Finally, Find-Point ensures
that Lj 6= ∞ and pj+1Lj = ∞, satisfying the last two requirements. This proves that any
certificate generated by Prove-Prime will be accepted by Check-Prime and constitutes
a proof of primality of p = p0.

4.5 Runtime

Since pj+1 ≈ pj/2, we expect i = O(log p) iterations of the main loop in Prove-Prime. For
each of these iterations, we must consider the expected runtime of Generate-Curve and
Find-Point.

The runtime of Generate-Curve is equal to the number of elliptic curves that must be
tested before finding one of the right order, multiplied by the time needed to test for the order
of each group. Let Tpj be the number of curves that must be tested; we will defer discussion

of the behavior of Tpj until later. Schoof’s algorithm runs in O(log8 pj) time [9], which

dominates the O(log4 pj) runtime of the probabilistic primality test (O(log3 pj) time for each
iteration of the test [7], multiplied by running O(log pj) trials). Thus Generate-Curve
runs in Tpj ·O(log8 pj) time.

5

An Overview of Elliptic Curve Primality Proving

To analyze the runtime of Find-Point, we note that we need to choose an expected number
of 2p

#EA,B(Fp)
≥ 2p

p−2√p+1
= O(1) values of x before we find a quadratic residue. Then since

E(Fp) ∼= Z2×Zq, approximately half the points will be of order q, so we need to try 2 points
on expectation. Verifying that L ∈ EA,B(Fpj) has order q takes O(log3 pj) time, yielding a

final expected runtime of O(log3 pj) time for Find-Point.

Putting all these terms together, Prove-Prime runs in (maxTpj)O(log9 p) time.

The runtime of Check-Prime is O(log4 p), since each of O(log p) primes in the certificate
chain may be verified in O(log3 p).

The full analysis of the Tpj term is outside the scope of this paper. We present the analysis
under a widely-believed conjecture.

Conjecture 8. (Distribution of primes in short intervals):
Let S(p) = {q : p+ 1− b√pc ≤ 2q ≤ p+ 1 + b√pc, q prime} be the set of primes in a short

interval around p/2. Then |S(p)| = O(
√
p

logc p
) for some constant c.

In other words, the distribution of primes in a short interval can be approximated by the
asymptotic behavior of the distribution of primes.

Given Conjecture 8, we may apply Theorem 1 to get

Corollary 9. (Distribution of elliptic curve orders in short intervals):
Let p > 5 be a prime, and choose A,B randomly from Fp. Let S(p) ⊆ {p+1−b√pc, . . . , p+
1 + b√pc be defined as above to be the set of numbers in the interval that are twice a prime.
Then

Pr(#EA,B(Fp) ∈ S(p)) = Ω

(
1

logc+1 p

)
where c is the constant from Conjecture 8.

Proof. Letting S = S(p) in Theorem 1, we get Pr(#EA,B(Fp) ∈ S(p)) > k1
log p
· k2
√
p

logc p
1

2b√pc+1
>

k3
logc+1 p

= Ω
(

1
logc+1 p

)
for some constants k1, k2, k3. �

Under this conjecture, we may invert the probability to get maxTpj = Tp = O(logc+1 p).

This gives Prove-Prime an expected runtime of O(logc+10 p).

Without this conjecture, it is possible to show that Goldwasser-Kilian runs in expected time
O(log12 p) for almost all inputs p [8].

5 Recent Advances

Since the publication of Goldwasser-Kilian, various improvements have been made on the
ECPP. Atkin-Morain [5] decided to approach the problem from a different direction: instead
of searching for a curve and then computing its order as in Goldwasser-Kilian, Atkin-Morain

6

An Overview of Elliptic Curve Primality Proving

computes an order and searches for a curve of that order using complex multiplication. By
doing so, Atkin-Morain avoids the expensive Schoof computation and runs much faster in
practice, with a heuristic runtime of O(log5 p) [5].

“Fast ECPP” improves on Atkin-Morain by using a faster method to compute many square
roots and has achieved heuristic time Õ(log4 p). Morain [12] points out that several steps in
“fast ECPP” have time complexity Õ(log3 p), so it seems that further advances in improving
the efficiency would require major revisions. Cheng [6] has recently published a hybrid
method of ECPP and AKS that also achieves heuristic time Õ(log4 p).

6 Future Developments

Primality proving has come a long way from its early beginnings in ancient Greece. The
establishment of polynomial-time proving algorithms is one of the major breakthroughs of
modern mathematics. While specialized tests have contributed to the largest primes known
(the Lucas-Lehmer test found a 12978189-digit Mersenne prime in 2008 [18]), generalized
tests have allowed us to find large primes without a special form. ECPP algorithms have
proven to be the fastest known generalized algorithms in practice, and the rise of parallel
computation has given a substantial speed boost to these algorithms. For example, the
largest prime established on a single-processor instance of Morain’s ECPP implementation
is 3508 digits, while a cluster-based implementation recently established a 26643-digit prime
[13]. Combining strategies from ECPP and AKS may give insight into faster hybrid algo-
rithms for primality proving.

Due to the sequential nature of the ECPP certificate generation and the lack of data par-
allelism in elliptic curve operations, GPUs seem ill-suited to handling the parallelism of
elliptic curve primality proving. There is promise, however, in the use of GPUs to par-
allelize the probabilistic primality tests used by ECPP. A recent project has produced a
GPU-based primality test that gives an order of magnitude stronger probable primes than
previous tests [17]. Theoretically, stronger probable primes would decrease the number of
retries encountered by ECPP, although as this number is already fairly low, GPU parallelism
is unlikely to result in a marked empirical improvement in ECPP. As computing becomes
increasingly parallel, research into developing data parallel techniques of primality proving
becomes increasingly valuable.

References

[1] Adelman, L. M.; Pomerance, C.; Rumely, R. On distinguishing prime numbers from composite
numbers. Ann. of Math. 117(1): 173-206, 1983. MR0683806 (84e:10008)

[2] Adelman, L. M.; Huang, M. A. Primality testing and Abelian varieties over finite fields. Lecture
Notes in Mathematics vol. 1512: 142, 1992. MR0683806 (84e:10008)

7

http://www.ams.org/mathscinet-getitem?mr=0683806
http://www.ams.org/mathscinet-getitem?mr=0683806

An Overview of Elliptic Curve Primality Proving

[3] Agrawal, M.; Kayal, N.; Saxena, N. PRIMES is in P. Ann. of Math. 160(2), 781-793, 2004.
MR2123939 (2006a:11170)

[4] Atkin, A. O. L. Manuscript, Lecture notes of a conferences, Boulder, Colorado, August 1986.

[5] Atkin, A. O. L.; Morain, F. Elliptic curves and primality proving. Math. Comp. 61(203): 29-68,
1993. MR1199989 (93m:11136)

[6] Cheng, Q. Primality proving via one round in ECPP and one iteration in AKS. Advances
in cryptology – CRYPTO 2003 in Lecture Notes in Comput. Sci. vol. 2729: 338-348, 2003.
MR2093202 (2005e:68088)

[7] Cohen, H.; Lenstra, H. W., Jr. Primality testing and Jacobi sums. Math. Comp. 42(165):
197-330, 1984. MR0726006 (86g:11078)

[8] Goldwasser, S.; Kilian, J. Almost all primes can be quickly certified. STOC ’86 Pro-
ceedings of the 18th Annual ACM Symposium on Theory of Computing : 316-329, 1986.
doi:10.1145/12130.12162

[9] Goldwasser, S.; Kilian, J. Primality Testing Using Elliptic Curves. Journal of the ACM 46(4):
450-472, 1999. MR1812127 (2002e:11182)

[10] Lenstra, H. W., Jr. Factoring integers with elliptic curves. Ann. of Math. 126(3): 649-673,
1987. MR0916721 (89g:11125)

[11] Miller, G. L. Riemann’s hypothesis and tests for primality. J. Comput. System Sci. 13(3):
300-317, 1976. MR0480295 (58 #470a)

[12] Morain, F. Implementing the Asymptotically Fast Version of the Elliptic Curve Primality
Proving Algorithm. Math. Comp. 76(257): 493-505, 2007. MR2261033 (2007m:11167)

[13] Morain, F. Quelques nombres premiers prouvés par mes programmes (some primes proven
by my programs). Available as http://www.lix.polytechnique.fr/~morain/Primes/

myprimes.html

[14] Pratt, V. R. Every prime has a succinct certificate. SIAM J. Comput. 4(3): 214-220, 1975.
MR0391574 (52 #12395)

[15] Rabin, M. O. Probabilistic algorithm for testing primality. J. Number Theory 12(1): 128-138,
1980. MR0566880 (81f:10003)

[16] Solovay, R.; Strassen, V. A fast Monte-Carlo test for primality. SIAM J. Comput. 6(1): 84-85,
1977. MR0429721 (55 #2732)

[17] Worley, S. Optimization of primality testing methods by GPU evolutionary search. GPUs
for Genetic and Evolutionary Computation: 2009. Available as http://www.gpgpgpu.com/

gecco2009/6.pdf

[18] Yates, S.; Caldwell, C. The largest known primes. Available as http://primes.utm.edu/

primes/lists/all.pdf

8

http://www.ams.org/mathscinet-getitem?mr=2123939
http://www.ams.org/mathscinet-getitem?mr=1199989
http://www.ams.org/mathscinet-getitem?mr=2093202
http://www.ams.org/mathscinet-getitem?mr=0726006
http://dx.doi.org/10.1145/12130.12162
http://www.ams.org/mathscinet-getitem?mr=1812127
http://www.ams.org/mathscinet-getitem?mr=0916721
http://www.ams.org/mathscinet-getitem?mr=0480295
http://www.ams.org/mathscinet-getitem?mr=2261033
http://www.lix.polytechnique.fr/~morain/Primes/myprimes.html
http://www.lix.polytechnique.fr/~morain/Primes/myprimes.html
http://www.ams.org/mathscinet-getitem?mr=0391574
http://www.ams.org/mathscinet-getitem?mr=0566880
http://www.ams.org/mathscinet-getitem?mr=0429721
http://www.gpgpgpu.com/gecco2009/6.pdf
http://www.gpgpgpu.com/gecco2009/6.pdf
http://primes.utm.edu/primes/lists/all.pdf
http://primes.utm.edu/primes/lists/all.pdf

	Introduction
	Background
	Algorithm
	Analysis
	Overview
	Main reduction step
	Primality proving
	Certificate checking
	Runtime

	Recent Advances
	Future Developments

