
Pertinent Side Channel Attacks on Elliptic Curve Cryptographic Systems

Stanford University
CS259c/MATH250: Elliptic Curves in Cryptography

December 15, 2011

1 Introduction

Elliptic curve cryptosystems have become the most trusted, secure systems in widespread use today. However, the
recent advent of utilizing side channel information poses an immediate and powerful threat to systems which are not
prepared for this exact type of attack. Side channel analysis (SCA) attacks use some measured quantities outside
the scope of the actual cryptographic algorithm, in addition to some knowledge of the algorithm used, in order to
break the cryptosystem and obtain private data. Specifically, processing time and consumed power may be measured
in order to gain information which is then used to deduce the secret key. Side channel attacks of this kind are
non-invasive, and unlike using reverse engineering techniques with a tampered device, will usually go unnoticed by
the victim. These attacks fall into three main categories: fault analysis, timing attacks, and power attacks. In the
context of elliptic curves, fault analysis involves injecting random register faults while a computation is being done,
resulting in a point not on the correct elliptic curve but on another curve which is known by the attacker. This paper
will focus on the latter two methods: timing and power attacks.

In the remainder of the paper, a simple algorithm used for point multiplication will be outlined, since this can
be used in subsequent examples to illustrate the general attack procedure. Then, timing-based and power-based
attack methods will be discussed, along with examples and countermeasures. A detailed examination of differential
power analysis will be explained, since this is one of the most powerful and easily implementable side channel attacks
currently known. A brief discussion of related side-channel attacks and future possibilities will conclude the paper.

2 Naive double-and-add algorithm

Given an elliptic curve E : y2 = x3 + Ax + B defined on finite field Fq, multiplying a point P ∈ E(Fq) by a scalar
k ∈ Fq means to add P to itself k times. When k is expressed in binary digits, this lends itself to a simple double
and add algorithm. Let k = kL−1kL−2...k1k0 be expressed in binary. The algorithm is as follows (∞ corresponds to
the point at infinity, an identity element for all elliptic curves):

Algorithm 1 : Double and Add
1 . Q = ∞
2 . for i=L−1 to 0 :
3 . Q = [2]Q
4 . i f ki==1: Q = Q + P
5 . output Q

The algorithm simply steps through the bits of k and adds P to Q whenever it encounters a set bit. Otherwise,
it doubles the value currently in Q, since each step through the binary k corresponds to one higher power of 2. The
advantage of this algorithm is that it computes [k]P in only w(k) adds, where w(k) is the Hamming weight of k, the
number of 1’s in k. A direct algorithm computing [k]P = P + P + ...+ P︸ ︷︷ ︸

k times

takes k adds and is therefore less efficient

than double-and-add. However, as will be shown, this naive algorithm contains security flaws which can be exploited
using SCA attacks.

1

3 Timing analysis attacks

3.1 Description, example, countermeasures

Simple timing attacks (STA) rely on the fact that different operations, or different inputs to the same operation,
can have a large timing variance. By measuring only the time that computations are taking, an attacker can quite
easily deduce private key data, given that he knows the specific computational algorithm being used. For example,
if the double-and-add method for point multiplication is being used, an attacker may know that the secret key will
be multiplied by some point P at some point in the protocol. In El Gamal encryption, for example, the decryption
algorithm involves finding c2 − [a]c1, where c1 and c2 are two publicly known points on the elliptic curve which
represent the ciphertext. Depending on the value of a, the time between observed power consumption peaks in the
processor can reveal a, without having to know either the value of the power or the ciphertexts. To illustrate this,
we follow the example given in [1].

From the double-and-add algorithm, it is clear that when a bit of k is 0, the point Q is doubled, and when a bit
of k is 1, the point Q is doubled and added to P . Since point doubling (P + P) requires slightly fewer processor
arithmetic operations than arbitrary point addition (P + Q, P 6= Q) due to the ability to reduce the group law
for P + P , the attacker can distinguish between these two cases, and the key can be reconstructed. This was one
very concrete, simple example of how practical it is to attack an FPGA implementation with nothing more than an
oscilloscope, although the countermeasures are easily implemented. The easiest way to combat this type of attack
is to insert dummy adds after step 4 of the algorithm, and to store it in some ignored variable such as R. Then,
regardless of each bit of k, the same number of processor operations will be performed, rendering simple timing
analysis useless. Similarly, one could use the full group law for arbitrary point addition even when doing the point
doubling.

4 Power analysis attacks

4.1 Simple power analysis and countermeasures

Power analysis attacks are the next step up in the arsenal of side channel attacks, and are very similar to timing
attacks. In simple power attacks (SPA), the power or current trace of a microprocessor is measured. Since the
current drawn by the processor is different for different types of operations (or different inputs), the secret key may
again be recovered. Contrary to simple timing analysis attacks, the actual shape of the signal must be analyzed
(as opposed to only the time spacing of peaks), which could require some basic signal processing techniques (i.e.
noise variance characterization and reduction) in addition to visual inspection. It has been shown [2] that in some
symmetric encryption schemes such as DES, and some public schemes such as RSA, this type of attack is feasible
given a processor unequipped with the proper countermeasures. For example, the initial permutation and 16 DES
rounds (involving permutations, transformations via lookup table, and bit operations) are clearly visible in the power
consumption trace from a typical smart card (Figure 1).

Countermeasures include the ones taken for simple timing analysis attacks in addition to multiplication algorithms
such as the Montgomery Power Ladder, which, for every bit of k, stores both an addition and a doubling. Since
there are no conditional branches, the algorithm doesn’t depend on the actual bits of d and is thus SPA-secure. This
method is especially nice since it doesn’t even reveal the Hamming weight (number of 1’s) of the key, as opposed to
other blinding techniques which might. Algorithm 2 below outlines this method.

2

Figure 1: From [2]. Top: Simple power trace of a DES implementation where the initial permutation (IP) and 16
main rounds are clearly visible. Bottom: Zoomed-in portion of the IP, showing the high resolution and amount of
data contained in the trace.

Algorithm 2 : Montgomery Ladder M u l t i p l i c a t i o n
1 . Q[0] = P
2 . for i=L−2 to 0 :
3 . Q[0] = 2Q[0]
4 . Q[1] = Q[0] + P
5 . Q[0] = Q[di]
6 . output Q[0]

The Montgomery exponent ladder method for point multiplication is resistant to most timing and power SCAs,
but might be vulnerable to more sophisticated methods of attack, as shown in the next section.

4.2 Differential power analysis

4.2.1 Description and example

A much more powerful version of power-based attacks is differential power analysis (DPA), which uncovers statistical
relationships between correct and incorrect guesses at a hypothesized bit of the secret key. The following description
and example of DPA is adapted from [5]. Whereas SPA looks at one power trace from which all information is
deduced, DPA looks at many power traces and analyzes them statistically. To uncover these statistical relationships
requires some signal processing on the power trace data, but yields correlations that will go undetected in simple
power analysis. The two key assumptions for differential power analysis is that the algorithms used by the processor
must be known ahead of time, and that the secret key throughout the entire process must be kept fixed. For this
reason, signature schemes such as ECDSA are not vulnerable to such an attack (since the secret changes from message
to message), while general elliptic curve encryption schemes (such as El Gamal) and key exchange protocols (such
as elliptic curve Diffie-Hellman) are.

Differential power analysis consists of two distinct phases: data measurement, and signal processing. In the
first phase, the side channel is measured by sampling power consumption during N intermediate steps of some
computational algorithm. Then, by computing the intermediate values of the algorithm under some guessed key
value (or a portion of the key value), we are able to begin the second phase, which involves computing the correlations
between each set of hypothetical intermediate values and the power measurements (traces). The key result of this
technique is that naive implementations of elliptic curve cryptosystems can be compromised in relatively few power
trace measurements (on the order of 1000) [5].

This process is best illustrated with an example. Say we are using El Gamal encryption, and our task is to find
d, given P ∈ E(K) and Q = [d]P ∈ E(K) for an elliptic curve E over some finite field K. If we were to approach this
problem from a purely mathematical standpoint, this problem boils down to the discrete logarithm problem, which,
in a field of large enough order, is computationally infeasible. Now assume further that we know that the processor
uses the Montgomery Ladder (Algorithm 2) to compute point multiplication, so STA and SPA will do us no good.

3

(a) Peak: correlated (b) No peak: uncorrelated

Figure 2: From [5]. Correlated (a) and uncorrelated (b) differential power traces

When the processor computes [d]P in order to decrypt, we can do the following:

1. We observe distinct points Pi as inputs to the algorithm and measure power consumption traces during the
computation of [d]P1, [d]P2, ..., [d]Pk resulting in k different power traces Ci(t), 1 ≤ i ≤ k.

2. We observe that if the bit dL−2 = 0, then [4]P is computed at the next iteration, but if dL−2 = 1, [4]P is never
computed (although [6]P is). We conclude that there will be a correlation between an arbitrary bit of [4]P (we
can compute 4[P] as a pre-processing step), and our power trace. This is because hardware operations on set
bits inherently consume more power than operations on unset bits.

3. We then compute the correlation function g(t) between an arbitrary bit si of [4]Pi (for 1 ≤ i ≤ k) and our
power traces Ci(t):

g(t) = 〈Ci(t)〉si=1 − 〈Ci(t)〉si=0 , (1)

where 〈Ci(t)〉 denotes the average over all Ci at time t. g(t) is just the difference between the average of all
power traces where our arbitrary bit is 1, and the average of all power traces where our arbitrary bit is 0. Using
the observation (2), if we see a peak in g(t), it will occur at some time t′ (the instant that 4Pi is computed by
the algorithm) since by our observation, si is correlated to the power trace if 4Pi is computed. In this case, we
conclude that dL−2 = 0. If we see no peak in g(t), then we conclude that 4Pi is never computed and that our
arbitrary bit has no relation to what has been computed in the processor: thus dL−2 = 1.

4. We repeat this process, one bit at a time, (i.e. for bit dL−3 we compute the correlation between power traces
Ci(t) and an arbitrary bit of either [8]P = 2 ∗ (4P) if the last key bit was 1 or [12]P = 2 ∗ (6P) if the last key
bit was 0), and deduce the entire secret key d.

In summary, we have used knowledge of the algorithm in order to find correlations in the power traces, based on
whether or not a certain power of 2 multiple of P is computed. Figure 2 shows the difference between observing a
positive correlation between power trace and a bit of 4Pi, and observing no correlation. Although the multiplication
algorithm we exploit is not vulnerable to simple timing or power attacks, we have leveraged some basic signal
processing to deduce the secret key d, and we have done it in O(L) time after taking the measurements. Not only
El Gamal cryptosystems are vulnerable to this DPA attack: any decryption algorithm involving multiplication of a
fixed secret key with a known point, such as Diffie-Hellman key exchange, is open to this exact type of attack.

Another method of finding correlations in noisy power traces is the Pearson product-moment coefficient r described
in detail in [8], which is defined as follows:

4

r =

k∑
i=1

(Ci(t)− 〈Ci〉)(Li(t)− 〈Li〉)√√√√ k∑
i

(Ci(t)− 〈Ci〉)2
k∑
i

(Li(t)− 〈Li〉)2
(2)

Ci(t) are the power traces measured in step 1, and Li(t) are the “leakage” values for input Pi which is somehow
deterministically calculated, based on the expected value of some intermediate arbitrary bits of Q[0]. This equation
is simply SP/

√
SSCSSL, where SP is the sum of products, SSC is the sum of squares of C, and SSL is the sum

of squares of L, where C and L are both mean-adjusted. By looking at individual correlations between samples of
the power traces, this metric more precisely finds statistical relationships within the data, although it is a more
computationally intensive method. A major benefit of this method is that multiple bits of the key may be guessed
at the same time, as opposed to one bit at a time, since the leakage model can take into account more than one bit
(in the first DPA example, the leakage value was basically either 0 or 1).

4.2.2 Countermeasures

Three easily-implemented ways to thwart DPA have been presented by [5].

1. Randomize the secret key d at the beginning of the algorithm.

(a) Pick a random k of some length (usually ≈ 20 bits)

(b) Compute d′ = d+ k ·#E(K) where #E(K) is the number of points on E(K).

(c) Use the Montgomery Ladder algorithm to compute Q = d′P

This works because #E(K) · P = ∞ since the order of a point must divide the order of the group, and
therefore Q = dP +∞ = dP as required. Without operating on the fixed secret key d, the algorithm reveals
no information about the bits of d and only operates on the random d′.

2. Blind the point P by a secret point R such that S = [d]R for some known S, known only by processor.

(a) Use some multiplication algorithm to compute d(R+ P)− S = dR+ dP − dR = dP.

(b) Before starting the algorithm again for another multiplication, refresh R (thereby refreshing S) by R ←
(−1)b2R for b

R←− {0, 1}

Since the point (R+P) is random and unknown even when given P , the attacker will not be able to compute the
theoretical intermediate values in the DPA (i.e. in the example of the previous section, it would be impossible
to compute [4](R+ P), [8](R+ P), etc.)

3. Use randomized projective coordinates.

(a) Store points P = (x, y) as P ′ = (λx, λy, λ) for some random λ ∈ K−{0} before each doubling and addition
of the multiplication algorithm.

(b) Perform the usual point multiplication to find Q′ = aP ′ = (x′, y′, z′) using the general group law.

(c) Output Q = (x′

z′ ,
y′

z′).

Now, the attacker cannot determine theoretical intermediate values of the algorithm, and the DPA fails. Simi-
larly, randomized Jacobian coordinates may be used, in which (x, y) is represented as (x′, y′, z′) = (θ2x, θ3y, θ)

for some random θ ∈ K− {0}. In this case, we would output Q = (x′

z′2 ,
y′

z′3).

5

4.2.3 Refined attacks

One interesting related attack is the refined power attack or RPA, which is basically a DPA technique focusing on
special points P0 where either the x-coordinate or y-coordinate of P0. As shown in [7], a point with x-coordinate
equal to 0 exists on a curve E : y2 = x3 +Ax+B defined on a finite field of prime order FP , p > 3 if and only if B is
a quadratic residue modulo p, i.e. ∃ r ∈ FP : r2 ≡ B (mod p). This arises directly from setting x = 0 in the equation
for the curve. Similarly, a point with y-coordinate equal to 0 exists on the curve E if and only if x3 + Ax + B
has at least one root in Fp. By waiting for a special point P0 to go into the multiplication algorithm, and then
leveraging several computational shortcuts and properties, these refined attacks render the three countermeasures in
the previous section useless. For example, if x = 0 or y = 0 in normal coordinates, then they will still be zero in
projective coordinates, and other more sophisticated countermeasures must be taken.

4.3 Template attacks

Very similar to differential power attacks are template attacks [4]. Both techniques consist of two rounds: data
collection and data processing (now called “template building” and “template matching”, respectively). The main
difference is that now, the attacker is assumed to have full control of the processor: he can feed in an arbitrary number
of (key, data) pairs and then sample the resulting power trace N times. By measuring the power consumption trace
for one of these (key, data) pairs (ki, di), he can then fully characterize the device, which he then models as an
N-dimensional normal random variable:

p(x) =
1√

(2π)N · det(C)
· exp(−1

2
· (x−m)′ ·C−1 · (x−m)). (3)

C is the NxN covariance matrix which characterizes the degree of dependence between observations xi and xj ,
and m is an N-vector of mean values, E[x]. As C and m fully characterize the power trace we measured, the pair (m,
C)di,ki is called the template for input (ki, di). By repeating this process for different (key, data) pairs, we obtain
many templates.

Then, all that is left to do is to observe and sample the power trace for an unknown (key, data) pair, resulting in
power samples t. By finding the probabilities of observing the trace t in each of the constructed templates, we can
find the most probable template corresponding to the correct (key, data) pair (k∗, d∗):

(k∗, d∗) = arg max
ki,di

p(t|(m,C)di,ki
). (4)

By finding the maximum likelihood template, we are basically finding the template which ’fits’ the observed
unknown power trace the best, thus revealing to us a good candidate for the secret key. There are few known
countermeasures to this type of attack, with one being randomized projective coordinates as with defending from
DPA attacks. Although relatively unstudied outside of [4], template attacks could pose a heavy threat if proven
feasible.

5 Summary and future

A few of the more pertinent examples of side channel attacks have been presented here. It appears that all that
is necessary to protect one’s system against such attacks is knowledge of the existence of SCA, since in most cases
countermeasures are very simple to implement. The main threats remaining in the field of side channel attacks
seem to be RPA and template attacks, both of which are relatively unexplored areas of research. Additionally, [6]
and others have proposed an extension of differential power attacks to measure electromagnetic radiation instead of
electrical power. Operating on the frequency-domain signal as opposed to the time-domain signal would require most
of the same countermeasures as ordinary DPA with the added benefit (to the attacker) of not needing any physical
connection with the device. If these potential methods of attack prove to be feasible, more advanced protection
schemes will have to be devised to maintain the level of security offered by elliptic curve cryptography.

6

References

[1] S. Kadir, A. Sasongko, et al, Simple Power Analysis Attack against ECC Processor on FPGA Implementation.
2011 International Conference on Electrical Engineering and Informatics, 17-19 July 2011.

[2] P. Kocher, J. Jaffe, B. Jun, Introduction to Differential Power Analysis and Related Attacks. Cryptography
Research, Inc, 1998.

[3] H. Cohen, G. Frey, et al, Handbook of Elliptic and Hyperelliptic Curve Cryptography, chapter 28. Chapman and
Hall/CRC, 2005.

[4] M. Medwed and E. Oswald, Template Attacks on EDCSA. Information Security Applications, WISA, vol. 5379,
2008, pp. 14-27, 2008.

[5] J.S. Coron, Resistance Against Differential Power Analysis for Elliptic Curve Cryptosystems. Cryptographic
Hardware and Embedded Systems, vol. 1717 of Lecture Notes in Computer Science, pp. 292-302, 1999.

[6] J. Fan, X. Guo, et al., State-of-the-art of secure ECC implementations: a survey on known side-channel attacks
and countermeasures. IEEE, 2010.

[7] L. Goubin, A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems, CP8 Crypto Lab, Schlimberg-
erSema, pp. 207-208, 2003.

[8] L.C. Brown, P.M. Berthouex, et al, Statistics for Environmental Engineers, 2nd Ed., chapter 31. CRC Press,
2002.

7

