
CS 259C/Math 250: Elliptic Curves in Cryptography
Homework 1 Solutions

1.

2.

3. (a)
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(b)

(c)

Alternatively, we could compute the orders of the points in the group:

The group has 32 elements (EF.order() or EF.count points()), there are ele-
ments with order 16, but no elements of order 32, the group structure must be
Z16 × Z2

(d)

Alternatively, we can compute

This means 9P = 1Q. Lastly, we could have written a procedure:

(e)

4. (a) The easiest way to solve this part is to recall that −(x, y) = (x,−y). Hence, if
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P = (x, 0), −P = (x, 0) = P , so 2P =∞.

When K = R, we can interpret this geometrically. We can perform implicit
differentiation on the equation for the elliptic curve (differentiating with respect
to y1, not x1):

2y1 = 3x21x
′
1 + Ax′1 = (3x21 + A)x′1

Since y1 = 0, we have either 3x21 +A = 0 or x′1 = 0. Suppose the former was true.
We have:

0 = y21 = x31 + Ax1 +B, since (x1, 0) is on the elliptic curve (1)

A = −3xy21, by assumption (2)

0 = −2xy31 +Bor B = 2x31, by 1 and 2 (3)

4A3 + 27B2 = −108xy61 + 108xy61 = 0, by 2 and 3 (4)

Thus, the curve is singular, a contradiction. Hence, x′1 = 0. This means the
tangent line through P is vertical, so 2P =∞.

(b) Now we are dealing with the curve y2 = x3+B, the special case of the Weierstrass
equation where A = 0. If P = (0, y1) is a point on this curve, then y1 6= 0, as
y1 = 0 would imply B1 = 0, making this curve singular. Thus, the group law tells
us how to compute 2P = (x2, y2):

m =
3x2 + A

2y1
=

3× 0 + 0

2y1
= 0

x2 = m2 − 2x1 = 0

y2 = m(x1 − x2)− y1 = −y1

Thus, 2P = (0,−y1) = −P , meaning 3P =∞.

When K = R, there is also a geometric interpretation. We can perform implicit
differentiation on the equation for the elliptic curve (differentiating with respect
to x1):

2y1y
′
1 = 3x21 = 0

Since y1 6= 0, y′1 = 0. Thus, the line passing through the curve is y = y1.
Since y21 = B, the only solution to y2 = x3 + B with y = y1 is x = 0. So
(0, y1) is the only, and hence third, intersection of the curve and this line. Thus
2P = (0,−y1) = −P , and hence 3P =∞.

For the general Weierstrass equation, the points of order three are the points
where the tangent line intersects the curve with order three. These turn out to
be the inflection points or ”flex points” of the curve.

5. (a) Suppose there was a point P that had order more than 2. Then P �P is the third
intersection of the elliptic curve and the tangent line passing through P . Now we
compute P � P � P = P � (P � P ): draw the line between P and P � P , and
P � P � P is the third intersection of that line and the curve. However, this line
is the same line used to compute P � P , so the line and the curve only intersect
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at P (where the line is tangent) and P � P . Thus P � P � P = P . Assuming �
is a group law, we subtract out a P giving P � P is equal to the identity. Thus,
every point has order at most 2.

(b) Let E be an elliptic curve, and let P1 and P2 be points on it such that Qi = Pi�Pi

is finite, and Q1 6= Q2. It is not hard to think of such examples, especially over
the real numbers (pick a P1, and then let P2 be a tiny displacement of P1. Then
Q2 will be a tiny displacement of Q1). In this case, according to part (a), Q1 and
Q2 are both identities. Thus, there is no unique identity.

(c) Observe that P � P = −(P + P ) where + is the usual group operation. We now
can test associativity:

(P �Q) �R = −((P �Q) +R) = −(−(P +Q) +R) = P +Q−R
P � (Q�R) = −(P + (Q�R)) = −(P − (Q+R)) = −P +Q+R

Subtracting these tells us that are only equal if and only if 2(P−R) = 0. As long as
the elliptic curve has some element P ∗ with order more than 2, (P ∗�∞)�∞ = P ∗

while P ∗� (∞�∞) = −P ∗ 6= P ∗. Hence, in this case, � will not be associative.

(d) In any elliptic curve where all points have order 2 or less, P �Q = −(P + Q) =
P + Q, so � is associative. A trivial example is when the elliptic curve has no
finite solutions, as in y2 + y = x3 + x + 1 over F2. A more interesting example
is y2 = x3 − x over F3. Here, the only finite solutions are (x, 0) for x = −1, 0, 1.
(x, 0) has order 2 (Problem 4a), so � defines a group law.

6. We could solve this problem by showing that, if (x1, y1) satisfies the equation for an
elliptic curve, then so does (x1,−a1x1 − a3 − y1). However, this would result in messy
algebra. A simpler way is to observe that we are trying to compute an intersection
(x2, y2) of the vertical line through (x1, y1) (that is, the line x = x1) and the curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Clearly, x2 = x1. Now, combine the equations for the line and the curve to eliminate
x, giving:

0 = y2 + (a1x+ a3)y − (x31 + a2x
2
1 + a4x1 + a6) (5)

We already have one solution, namely y1. Thus, this expressions factors as

0 = (y − y1)(y − y2)

Where y2 is the second solution and the one we are interested in. Expanding this
factorization gives

0 = y2 − (y1 + y2)y + y1y2

Compairing the linear terms of this and 5 tells us a1x + a3 = −(y1 + y2), which gives
y2 = −a1x− a3 − y1. Hence (x2, y2) = (x1,−a1x1 − a3 − y1) is the other point on the
elliptic curve with x coordinate x1, so it is the inverse of (x1, y1).
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7. We will adapt section 2.5.2 or Washington to our needs. Since x3 + y3 = d 6= 0, and
x3 + y3 = (x+ y)(x2 − xy + y2), x+ y 6= 0. Hence, we can write

x = u+ v

y = u− v

This gives us:
d = x3 + y3 = 2u3 + 6uv2

Dividing by 63d2/u3 (which is possible since u = (x+ y)/2 6= 0) gives:

(6d)3

u3
= 2× 63d2 + (62dv/u)2

Now we can write x1 = 6d
u

and y1 = 36dv
u

to get

y21 = x31 − 432d2

8. (a) If (x, y) satisfies y2 = x3 + Ax + B, then (−y)2 = y2 = x3 + Ax + B, so (x,−y)
satisfies the equation as well. The map (x, y)→ (x,−y) is thus a linear map from
the curve to itself, and it is invertible (since it is its own inverse). Therefore, it is
an automorphism.

(b) If (x, y) satisfies y2 = x3 +B, then (−y)2 = y2 = x3 +B = ζ3x3 +B = (ζx)3 +B,
so (ζx,−y) satisfies the equation as well. Composing the map (x, y) → (ζx,−y)
with itself 6 times yields the identity transformation, so this map is invertible. It
is also linear, meaning it is an automorphism on the elliptic curve.

(c) If (x, y) satisfies y2 = x3 + Ax, then (iy)2 = −y2 = −x3 − Ax = (−x)3 + A(−x),
so (−x, iy) satisfies the euqation as well. Composing the map (x, y) → (−x, iy)
with itself 4 times yields the identity transformation, so this map is invertible. It
is also linear, meaning it is an automorphism on the elliptic curve.

9.

This means that, for E1 and E2, we have the following isomorphisms over F2:

(x, y)→ (u2x+ r, u3y + su2x+ t)

Where (u, r, s, t) is either (1, 1, 1, 0) or (1, 1, 1, 1). Note that a more verbose version of
this Sage output can also be obtained by the command E2.isomorphisms(E1). This
gives us two isomorphisms:

φ1(x, y) = (x+ 1, y + x)
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φ2(x, y) = (x+ 1, y + x+ 1)

Since we are in characteristic 2, it turns out that the inverse of φ1 is given by the same
equations as φ2, and vice versa. Therefore, φi are invertible. You can also check that
they are indeed maps between E1 and E2. Therefore, these are isomorphisms.

The case for E1 to E3 yeilds no results. This is because there are no isomorphisms
within F2, so we will need an extension field. If we change to the following commands:

We will get, in addition to many more isomorphisms for E1 to E2, several isomorphisms
for E1 to E3. One of them is:

(u, r, s, t, u) = (1, a6 + a3 + a2 + a, a7 + a4 + a3, a7 + a6 + a2)

Where a is a generator for F28 . This corresponds to the transformation

(x, y)→ (x+ a6 + a3 + a2 + a, y + (a7 + a4 + a3)x+ a7 + a6 + a2)

This begs the question: why do we need F28? To understand why, we will start with
the general form for an isomorphism, and derive what the coefficients need to be:

φ(x, y) = (ax+ b, cy + dx+ e)

With a, c 6= 0. For this to satisfy the equation for E3, we must have:

(cy + dx+ e)2 + (cy + dx+ e) = (ax+ b)3 + (ax+ b)

Now we will expand the left side and replace y2 with x3 − y (since (x, y) is a point on
E1):

c2(x3 − y) + d2x2 + e2 + cy + dx+ e = (ax+ b)3 + (ax+ b)

This equation must hold for all x and y in the F2, Thus, the coefficients of each term
must be identical. This yields the following equations:

x3 : c2 = a3 (6)

x2 : d2 = a2b (7)

x : d = ab2 + a (8)

y : c2 + c = 0 (9)

1 : e2 + e = b3 + b (10)

Equation 9 tells us c = 1 (since c 6= 0). Eliminating d from 7 and 8 gives us:

a2b = a2(b4 + 1)
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Since a 6= 0, this gives us b4 + b + 1 = 0. 10 lets us determine e from b. Thus, the
general form of an isomorphism from E1 to E3 is:

φ(x, y) = (ax+ b, y + a(b2 + 1)x+ e)

Where a3 = 1, b4 + b + 1 = 0, and e2 + e = b3 + b. If we pick a = 1, all we need is an
extension field containing b and e. b will lie in F24 since it is a solution to a quartic
equation with coefficients in F2. e will then lie in F28 = F(24)2 since it is a solution to
a quadratic equation with coefficients in F24 .

10. (a) It is not hard to see that this map is invertible: the inverse map is given by

(x, y)→
(
x+ s2

u2
, y + sx+ s3 + t

)
All that remains to check is that it takes an element in E to another element in
E. We will do this as part of part (b).

(b) We will follow a procedure similar to that of question 9, and start with a general
automorphism:

φ(x, y) = (ax+ b, cy + dx+ e)

This is invertible as long as a, c 6= 0. Now we use the fact that the automorphism
maps points on the curve to points on the curve to derive constraints on our
variables: if y2 + y = x3, then

(cy + dx+ e)2 + (cy + dx+ e) = (ax+ b)3

Now we expand the left side and use the fact that y2 = x3 − y to simplify:

c2(x3 − y) + d2x2 + e2 + cy + dx+ e = (ax+ b)3

This map takes points on the curve to points on the curve if and only if all the
coefficients are equal. Thus we get:

x3 : c2 = a3 (11)

x2 : d2 = a2b (12)

x : d = ab2 (13)

y : c2 + c = 0 (14)

1 : e2 + e = b3 (15)

Since c 6= 0, 14 tells us c = 1. Thus a3 = 1 according to 11. Let us rewrite u = a2.
Then u2 = a4 = a and u3 = a6 = 1. Combining 12 and 13 gives us a2b = a2b4,
which is equivalent to b4 + b = 0. Let us define s = b2. Then s2 = b4 = b, and
s4 + s = b8 + b2 = b2 + b2 = 0. Observe that d = ab2 = u2s. Lastly, 15 tells us
that e2 + e = b3 = s6. rewriting t = e gives us:

φ(x, y) = (u2x+ s2, y + u2sx+ t)
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Where u3 = 1, s4 + s = 0, and t2 + t = s6, as desired. We have also shown that, if
the map satisfies this form, it will take points on the curve to points on the curve,
meaning it is an automorphism.

We can now count the number of automorphisms. There are 3 different values for
u (since it satisfies a cubic equation with distinct roots), each giving a different
automorphism (since a will be different). There are also 4 different values for s
(since it satisfies a quartic equation with distinct roots), each giving a different
automorphism (since for fixed a, different s will give different d). Lastly, for fixed
s, there are two values for t, since it satisfies a quadratic equation with distinct
roots (check that the discriminant of t2 + t = s6 is non-zero). Thus each root
gives a different automorphism. Since all automorphisms arise in this way, we
have 3× 4× 2 = 24 automorphisms.

(c) First, look at the general form of φ2:

φ2(x, y) = (ux+ (u2 + 1)s2, y + (u+ 1)usx+ s3u2)

If u = 1, this simplifies to

φ2(x, y) = (x, y + s3)

If s = 0, then this is the identity. Otherwise, s3 = 1, so this is the map taking a
point to its inverse. If u 6= 1, let’s look at φ3:

φ3(x, y) = (x+ (u2 + u+ 1)s2, y + (u2 + u+ 1)sx+ s3u+ t)

Since u 6= 1, u2 + u+ 1 = 0, giving:

φ3(x, y) = (x, y + s3u+ t)

Since we know this map outputs points on the curve, and the point shares an x
coordinate with the original point, this output must be either the original point
or its inverse. Hence s3u+ t = 0, 1, and thus φ3 is ±1.

(d) To show that this group is non-abelian, we just need to find an example of two
automorphisms that do not commute. There are plenty of examples. For one, let
u1 = u2 = 1, and let s1 and s2 be two distinct non-zero roots of s4 + s = 0. Then
if φi(x, y) = (x+ s2i , y + six+ ti), we have

φ1φ2(x, y) = (x+ s21 + s22, y + s2x+ t2 + s1(x+ s22) + t1)

φ2φ1(x, y) = (x+ s22 + s21, y + s1x+ t1 + s2(x+ s21) + t2)

These are the same if and only if s2s
2
1 = s1s

2
2. Since s1, s2 were assumed to be

non-zero, this is equivalent to s1 = s2, which we assumed false. Hence these two
automorphisms do not commute.

Another way to show that this group is non-abelian is a proof by contradiction,
using the fact that, as shown in part (c), there is an element of order 4 (the one
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whose square is −1), but none of order higher than 6. If the group were abelian,
by the fundamental theorem of abelian groups, we could decompose it as

Zr1 × Zr2 × · · · × Zr`

Where ri|ri+1∀i. There are only 3 possibilities:

G1 = Z24

G2 = Z2 × Z12

G3 = Z2 × Z2 × Z6

G1 and G2 have elements of order larger than 6, so they are not right. In G3, all
elements have order at most 6, but there are no elements of order 4. Hence none
of the possible abelian groups of order 24 match the automorphism group, so the
automorphism group is non-abelian.
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