
Schnorr Identification and Signatures

David Mandell Freeman

October 20, 2011

1 Identification

An identification scheme is an interactive protocol between two parties, a prover P and a verifier V.
If the protocol is successful, then at the end of the protocol the verifier is convinced he is interacting
with the prover, or more precisely, with someone who knows the secret key that corresponds to the
prover’s public key.

A simple example is the standard protocol of password authentication. The prover’s secret key
is her password pw, and the public key is H(pw) where H is a “one-way” hash function. The
protocol consists of the prover sending H(pw), and the verifier checks that this matches the stored
value. While this is secure against “direct” attacks, it is not secure against “eavesdropping” attacks,
where the adversary can observe some interactions between P and V and then try to impersonate
P — as soon as the adversary sees H(pw) from one interaction, he can then impersonate P in all
further interactions.

In the Schnorr identification protocol using elliptic curves, the prover’s secret is the discrete
logarithm a of a pair (P,Q = [a]P ) where P and Q are points on an elliptic curve E(Fq). (The
system works in any finite abelian group where discrete logarithm is hard, but we use elliptic curves
for concreteness and since that’s what this course is about!) To protect against eavesdropping
attacks, the protocol has three rounds:

Schnorr Identification Protocol. The public key pk consists of an elliptic curve E(Fq) and
two points P,Q ∈ E(Fq) of order r. The secret key sk is an integer in [1, r] such that Q = [a]P .

1. P chooses a random k
R← [1, r] and sends R = [k]P to V.

2. V chooses a random “challenge” e
R← [1, r] and sends e to P.

3. P computes s = k + ae (mod r) and sends s to V.

V accepts if [s]P = R+ [e]Q.

The function of the initial random value k is to “blind” the secret a so that it can be reused in
subsequent executions of the protocol.

Theorem 1. If the discrete logarithm assumption holds in E(Fp), then the Schnorr identification
protocol is secure against direct impersonation attacks.

Specifically, suppose there is an efficient algorithm A that can interact with V such that V
accepts with probability at least ε. Then there is an efficient algorithm B that can solve the discrete
logarithm problem in E(Fq) with probability at least ε2 − ε/r.

1



Proof sketch. The idea (due to Pointcheval and Stern) is to use a “rewinding technique”: we fix
the random value k used by the impersonation algorithm A and have A interact twice with the
verifier V, where each time V chooses a different random e. Suppose V chooses e1 and e2 for the
two different executions, and A computes s1 and s2 in the two executions. If V accepts both times,
then si = k+ aei for i = 1, 2, and then we have a = (s1− s2)/(e1− e2) (mod r) as long as e1 6= e2.

The “rewinding lemma” tells us that the probability that we obtain a discrete log solution
ε(ε−1/r). The ε factor is the accept probability of V on the first execution, while the ε−1/r factor
is (at least) the probability that V accepts on the second execution and e2 6= e1.

In an eavesdropping attack the adversary gets to observe transcripts of interactions between P
and V before he mounts his impersonation attempt. The Schnorr identification protocol is also
secure against such attacks. The idea behind the proof is that the adversary cannot learn anything
from observing transcripts of interactions that he could not compute himself; formally, we show that
there exists a simulator S that given only pk can output transcripts that are distributed identically
to real transcripts. The simulator S works as follows:

1. Choose random e, s
R← [1, r].

2. Compute R = [s]P − e[Q].

3. Output the transcript (R, e, s).

The key idea is that the order in which transcript elements are generated doesn’t matter when
observing the transcript as a whole. (This is different from an “active attack” where the adversary
gets to interact with the prover, and thus must generate messages in the correct order.)

2 Signatures

We can create a signature scheme out of the Schnorr identification protocol using the “Fiat-Shamir
transform.” The idea is that the prover becomes the signer, and instead of e being a random
challenge from the verifier, e encodes the message to be signed. To use the security properties of
the underlying identification scheme, the encoded message must look random to everyone involved.
This is done using a hash function H that takes arbitrary bit strings and outputs integers in [1, r];
if the hash function is well-designed, then the output looks random.

Schnorr Signature Scheme. The scheme S consists of three algorithms, Gen, Sign, and Verify.

• Gen() does the following:

1. Choose an elliptic curve E over a finite field Fq.

2. Choose a random point P
R← E(Fq)

3. Choose a random integer a
R← [1, r] where r is the order of P .

4. Choose a hash function H : {0, 1}∗ → [1, r].

5. Output pk = (P,Q = [a]P ) and sk = (a, pk).

• Sign(sk,M) does the following:

2



1. Choose random k
R← [1, r] and set R = [k]P .

2. Set e = H(M‖R).

3. Set s = k + ae (mod r).

4. Output the signature σ = (R, s).

• Verify(pk, σ = (R, s)) does the following:

1. Compute e = H(M‖R).

2. If R+ [e]Q = [s]P , output “accept”; else output “reject”.

Note that in real life, Gen will ensure that r is a large prime, equal to or very close to #E(Fq).

To analyze the security of Schnorr signatures, we model the hash function as a “random oracle.”
This means that the adversary attacking the signature scheme is not given a description of H but
rather is allowed to query an “oracle” that returns the value of H on the specified input. When
queried on input x, the oracle for H is allowed to return any value for H(x) as long as (a) our
answers are consistent (i.e., we always return the same output on the same input), and (b) answers
to previously unseen queries are uniformly random and independent of anything the adversary has
previously seen.

We now show that an adversary that can break the Schnorr signature scheme (in the random
oracle model) can break the identification scheme, and thus solve discrete logarithms.

Theorem 2. If the Schnorr identification protocol is secure, then the Schnorr signature scheme is
secure in the random oracle model.

Specifically, suppose there is an efficient adversary A that produces a valid signature forgery with
probability ε while making at most qH hash function queries and qS signature queries. Then there
is an algorithm B that successfully impersonates the prover in the Schnorr identification protocol
with probability at least ε/(qH + 1)− (qH + qS + 1)/r.

Proof sketch. Suppose we are given an public key P,Q = [a]P for the Schnorr identification scheme
and an adversary A that breaks the signature scheme. We construct an adversary B that uses A
to attack the ID scheme. Adversary B will act as a challenger in the signature game, responding
to A’s signature and hash function queries. B will then use the information it receives from A to
interact with the verifier V in the ID protocol.

Before describing B we make a simplifying assumption. By modifying A to make one more
hash function query if necessary, we assume that if A’s forgery is (m∗, R∗, s∗) then m∗‖R∗ was
queried to the hash function at some point. (This is where the qH +1 comes from in the probability
statement.)

We now describe B. First suppose that A makes only the hash query m∗‖R∗ and no signature
queries. When A makes this query, B will use R∗ as the first message in the ID protocol. B then
obtains a challenge e∗ from the verifier V and returns this value for H(m∗, R∗). The s∗ component
of the adversary’s forgery is then sent as the final message in the ID protocol. If the forgery is
valid, then we have [s∗]P = R∗ + [e∗]Q, and therefore the verifier accepts and we have broken the
ID scheme.

Now we allow A to make signature queries on messages mi. We simulate a signature in the
same way we simulated transcripts for the ID scheme above: we choose random ei and si and set

3



Ri = [si]P− [ei]Q. We then set the value of the hash function on input mi‖Ri to be H(mi‖Ri) = ei.
Since si and ei are random, this value looks random to the adversary, as required.

Now we allow A to make more hash queries m̃j‖R̃j . For now assume that m∗‖R∗ is the
first hash query. For other hash queries, we either use the preprogrammed value (for example, if
m̃j‖R̃j = mi‖Ri for the ith signature query), or we choose a new random value ẽj . From the point
of view of the adversary, these responses are consistent with H being a random function.

Finally, since the hash query used by A in his forgery may not be the first one, we use a
“guessing” argument: namely, we pick in advance a random ω ∈ [1, qH + 1] and hope that A
will forge on the ωth hash query. Since our chances of being correct are 1/(qH + 1), our success
probability is reduced by this factor.

In detail, adversary B is given a public key (P,Q) for the Schnorr identification protocol and
works as follows:

• Initialization:

1. Choose a random ω
R← [1, qH + 1].

2. Send pk to A as the signature public key.

• On receiving the ith signature query mi, do the following:

1. Choose random ei, si
R← [1, r].

2. Set Ri = [si]P − [ei]Q.

3. Return σi = (Ri, si).

4. Store ei as the value of H(mi‖Ri).

• On receiving the jth hash query m̃j‖R̃j , do the following:

1. If the value of H(m̃j‖R̃j) has already been set (during a signature query or a previous
hash query), return that value.

2. If j 6= ω, choose a random ẽj
R← [1, r], and set H(m̃j‖R̃j) = ẽj .

3. If j = ω:

(a) Send R̃j to V as the first step in the ID protocol.

(b) Obtain a challenge e∗ from V.

(c) set H(m̃j‖R̃j) = e∗.

• On receiving a forgery attempt (m∗, R∗, s∗) from A, send s∗ to V as the final step in the ID
protocol.

If the jth hash query is m∗‖R∗ (which happens with probability 1/(qH + 1) and the adversary’s
forgery is valid (which happens with probability ε), then we have

[s∗]P = R∗ + [H(m∗‖R∗)]Q = R∗ + [e∗]Q

and therefore V accepts.
The term (qH + qS + 1)/r in the probability statement comes from the chance that there will

be a collision among the points Ri chosen in response to signing queries; we omit the details.

Corollary 3. If the discrete logarithm assumption holds in E(Fq), then the Schnorr signature
scheme is secure.

4


	Identification
	Signatures

