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In order to attack a cryptographic system that does not appear to have any exploitable

flaw, one is reduced to solve a discrete logarithm problem, that is, in the context of elliptic

curves, given P,Q two points on an elliptic curve, finding a ∈ [1, r− 1] (r being the order

of P ) such that Q = aP . One method to do so is to construct a pseudo-random walk

Wi = aiP + biQ ∈ 〈P 〉 so that finding a is reduced to finding a collision Wi = Wj (this

result only holds with high probability: provided i 6= j, the probability that a collision

Wi = Wj will not result into a value a such that Q = aP is P(bi = bj), non-zero but

negligible). The algorithm takes an average of
√

πr
2 steps.

One approach to speed-up the process is to use the fact that the negation map R 7→ −R
defines a action on the group 〈P 〉 and would allow, a priori, to divide by 2 the size of the

space on which we apply the Pollard-rho algorithm (by defining the random walk on

〈P 〉 /{1,−1} instead of 〈P 〉) and so speed-up the process by a factor
√

2. The goal of

the present paper is to present this idea in more detail, along with the difficulties that

arise in the course of its implementation and the way, proposed by Bos et al in [BKL10]

to address them. It follows mainly [BKL10]. As it would be impossible to develop in

a couple of pages the entire entire work by Bos et al, the present paper focuses on the

Pollard-rho complexity, the implementation of the negation map method, main problem it

creates and the main idea underlying the solution proposed by Bos et al. In particular, the

previous approaches proposed in the literature to tackle the problem and the subtleties of

the solution proposed by Bos et al are beyond the scope of the current paper.

1 Birthday theorem and pseudo-random functions

This section is heavily based on the beginning of the chapter 14 of [Gal]. The proof of the

birthday theorem is exactly the same (I simply develop the analysis part, left out in the

book).
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This section deals with the birthday theorem and how it provides an upper bound

for the average complexity for Pollard-rho algorithm. This is not an exact copy of the

theorem in [Gal] since its formulation did not seem precise enough∗. I reformulate the

theorem as follows, to make it as unambiguous as possible:

Theorem 1.1. If Y1, . . . , Yk ∈ S are uniform, independent random variables on S, and

X = min(l : Yl ∈ {Y1, . . . , Yl−1}) is the first collision time, then EX ≤
√

nπ
2 + 2.

Proof. Let X the random variable corresponding to the number of points sampled at the

first collision. Since the points are sampled with uniform probability, the probability for

one specific point to be picked is 1
n . Then, the probability that l ≤ n points have been

sampled without collision is P(X > l) = (1− 1
n) . . . (1− l−1

n ) (after k distinct points have

been sampled, the k+1st point has to be sampled in the n−k remaining points, for k < l).

Since x 7→ exp (−x) is convexe, ∀x, 1− x ≤ exp (−x) and P(X > l) ≤
∏l−1
i=0 exp (−i/n) =

exp
(
−
∑l−1

i=0 i/n
)

= exp
(
− l(l−1)

2n

)
≤ exp

(
− (l−1)2

2n

)
(the last inequality coming from the

fact that exponential is increasing and −(l − 1) ≥ −l). If l > n, P(X > l) = 0

We know that P(X > l) =
∑∞

i=l+1 P(X = i). Thus,

P(X = l) = P(X > l − 1)− P(X > l)

and so,

EX =
∞∑
l=1

lP(X = l) =
∞∑
l=1

lP(X > l − 1)− lP(X > l) =
∞∑
l=1

lP(X > l − 1)−
∞∑
l=1

lP(X > l)

=
∞∑
l=0

(l + 1)P(X > l)−
∞∑
l=1

lP(X > l) = P(X > 0) +
∞∑
i=1

P(X > l) ≤ 1 +
n∑
l=1

exp

(
−(l − 1)2

2n

)

≤ 2 +

n−1∑
l=1

exp

(
− l

2

2n

)

Let’s now compute an upper bound for the previous sum of exponential: since x 7→
exp (−x) is decreasing, we have exp

(
− l2

2n

)
≤
∫ l
l−1 exp

(
−x2

2n

)
dx and so, we obtain the

inequality:
∑n−1

l=1 exp
(
− l2

2n

)
≤
∫ n−1
0 exp

(
−x2

2n

)
dx ≤

∫∞
0 exp

(
−x2

2n

)
dx. But using the

∗Indeed, the formulation in [Gal] is : Let S be a set of N elements. If elements are sampled uniformly
at random from S then the expected number of samples to be taken before some element is sampled twice
is less than

√
πN/2 = 1.253. If X, defined in the proof in [Gal], is understood to be the number of points

sampled before the point creating the collision is added, then, P(X = 1) = 1
n

. But following the result
and notations in [Gal], P(X > 1) = pn,1 = 1 which is wrong. It seems better to define X as I do, as the
number of points sampled at collision. Then, P(X > 1) = 1 since, to have a collision, one needs to sample
at least two points.
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change of variables u = x√
n

we obtain
∫∞
0 exp

(
−x2

2n

)
dx =

√
n
∫∞
0 exp

(
−u2

2

)
du. Now to

compute this integral, let’s remark that, using polar coordinates, we get:

∫
R

∫
R

exp

(
−x

2 + y2

2

)
dxdy =

∫ ∞
0

2πrexp

(
−r

2

2

)
du = 2π

[
−exp

(
−r

2

2

)]∞
0

= 2π

But, by separation of variables,

∫
R

∫
R

exp

(
−x

2 + y2

2

)
dxdy =

∫
R

exp

(
−x

2

2

)
dx

∫
R

exp

(
−y

2

2

)
dy =

(
2

∫ ∞
0

exp

(
−u

2

2

)
du

)2

Finally,
∫∞
0 exp

(
−u2

2

)
du =

√
π
2 and so EX ≤ 2 +

√
nπ
2

Now, in order to get a bound on the average number of steps needed by the Pollard-

rho algorithm to find a collision, we need an extra assumption. In [Gol], a pseudorandom

function is defined as follows:

A pseudorandom function is an efficient (deterministic) algorithm
that given an n-bit seed, s, and an n-bit argument, x, returns an
n-bit string, denoted fs(x) so that it is infeasible to distinguish the
values of fs for a uniformly chosen s ∈ {0, 1}n, from the values of
a truly random function F : {0, 1}n → {0, 1}n.

Thus, if we were using a pseudorandom function in the definition of the Pollard-rho

algorithm, the theorem 1.1 would imply that the average number of steps for a collision

to appear is upper bounded by 2 +
√

nπ
2 . As we’ll see, however, in the definition of the

algorithm, a lack of independence at collision time makes this bound slighty too optimistic.

2 Pollard-rho algorithm

The random walk for the Pollard-rho algorithm is developped as follows in [BKL10]:

consider a function l : 〈P 〉 → [0, r − 1] for some r. It induces the partition of 〈P 〉
by (Oi)i∈[0,r−1] = (l −1(i))i∈[0,r−1]. We assume that the |Oi| are close to n

r . Then, for

each i ∈ [0, r − 1], we compute ui, vi
R←− [1, n − 1]. We then define the function f(R) =

R + ul (R)P + vl (R)Q ∈ 〈P 〉. l is assumed to be a pseudo-random function†. Thus, the

probability for a certain point of the walk to be in Oi is pi = |Oi|
n .

†In [BKL10], it is only assumed that “l is perfectly random”. However, in this context, this seems the
only interpretation and it would mean that the image by l of the successive points in the random walk
are independent and identically distributed.
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However, as Bos et al point it out, successive iterations of the function f do not yield a

pseudo-random walk for the following reason: let’s define the class of a point the image by

l of the predecessor of the first occurence of the point. For example, if Pi never appeared

in the walk, its class would be l (Pi−1); if it appeared first as Pj , j < i (that is, j is the

smallest integer such that Pi = Pj), then the class of Pi is l (Pj−1). Since the function

l is pseudo-random, P(l (R) = i) = pi for R ∈ 〈P 〉. But, as Bos et al. notice, if the first

collision point is of class i, the preceding point is not in Oi. Indeed, if Pk+1 = Pl+1 is the

first collision (Pk+1 being the first occurence of Pl+1) and is of class i, then, l (Pk) = i. If

l (Pl) = i, then Pk = Pk+1−uiP −viQ = Pl+1−uiP −viQ = Pl and so, Pk+1 = Pl+1 is not

the first collision. Thus, if there is a collision at step l+1, then, the class of Pl+1 and l (Pl)

have to be different. But, “Pl+1 has class i” and l (Pl) = i are two independent events at

collision time l + 1 (since they depend respectively on points Pk and Pl with k < l (since

Pk+1 6= Pl+1 is the first appearance of Pl+1) and so l (Pl) and l (Pk) are independent since

l is pseudo-random). Thus, the joint probability is

P(class(Pl+1) = i&l (Pl) = i) = P(class(Pl+1) = i)P(l (Pl) = i) = p2i

Thus, the probability of a collision at l + 1 is l
n

(
1−

∑
i p

2
i

)
. We can account for

this imperfection in the independence of the distribution of the points on the random

walk in the proof of the birthday theorem by replacing the factor n by n

(1−
∑

i p
2
i )

in the

computation of P(X > l) (since the only thing we use to compute it the probability of a

collision at time l + 1), obtaining the bound on the average number of steps:

2 +

√
nπ

2
(
1−

∑
i p

2
i

)
If the random walk start on a point of form a0P + b0Q, then, for all i, Pi = aiP + biQ

(with the recursion formula ai+1 = ai + ul (Pi) and bi+1 = bi + vl (Pi))) and so, given a

collision Pi = Pj , provided bi 6= bj (which happens with high probability), we obtain:

Q =
aj−ai
bi−bj P , which solve the discrete log problem.

3 Negation map

This part is mainly based on the exercise 7 of the homework 3. It is a particular case of

the ideas developped in [WZ98].

This idea underlying the use of negation map is the following: we start by considering

the action of H = {1,−1} on 〈P 〉. Now, given the function f : 〈P 〉 → 〈P 〉, we can

construct the equivariant function f̂ : R = (x, y) 7→ f((x,min(y,−y)))(where the min
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function is applied to the representatives of y and −y in [0, p − 1])‡. Then, a random

walk in 〈P 〉 yields naturally a random walk in 〈P 〉 /H. Then, it is possible to apply the

Pollard-rho algorithm to the walk on 〈P 〉 /H which has half the size of 〈P 〉 and which,

theoretically, should gain a factor
√

2 in finding a collision. Then, from a collision in

〈P 〉 /H, it is easy to recover a collision in 〈P 〉: indeed, if (P̂i) is the random walk on

〈P 〉 /H and P̂i = P̂j , then, Pi = ±Pj and using the notations in the previous section, we

obtain (again, with high probability):

Q =
aj ∓ ai
bi ∓ bj

P

Thus, this would yield the wanted result with a gain factor of
√

2.

Unfortunately, this random walk on 〈P 〉 /H also introduces small cycles with a non-

negligible probability, preventing the algorithm to converge. The goal of the rest of this

paper is to present the how such cycles may appear along with main idea underlying

the approach Bos et al followed to address the problem without impacting too much the

performance of the algorithm.

4 Fruitless cycles

This section is, in part, based on the exercise 7 of homework 3. In this section, I assume

that Pi = aiP + biQ (and I keep track of the ai, bi)

A fruitless cycle is a cycle leading to a collision Pk = Pl such that bk = bl (or a collision

Pk = −Pl such that bk = −bl). In particular, it carries no information about the discrete

log.

Let’s consider the simplest fruitless cycle: the 2-cycle. Let’s assume that Pl = (xl, yl)

yl < −yl and yl+1 > −yl+1 (which happens with probability about 1
4). Let’s also assume

that l (Pl) = l (Pl+1) = i for some i ∈ [0, r − 1] (that happens with probability about 1
r

since we assumed the |Oi| roughly of equal size). Then, Pl+2 = −Pl+1 + uiP + viQ =

−(Pl + uiP + viQ) + uiP + viQ = −Pl. Thus, for the induced random walk in 〈P 〉 /H, it

implies that P̂l+2 = P̂l (and since bl+2 = −bl+1 + ui = −(bl + ui) + ui = −bl this cycle is

fruitless). This cycle appear with probability at least 1
4r and since the result would be the

‡This definition, which can be applied to any function f is not exactly the one used in [BKL10]: indeed,
if f(R) = R + S, as it is defined in [BKL10] for the regular Pollard-rho algorithm, and if R = (x, y) and
y > −y, then, in our definition, f̂(R) = f(−R) = −R+S while in their definition, the image of R after one
step would be −R − S. Although it may change slightly the order of hypotheses resulting in cycles, this
does not change anything to the conclusions. Also, strictly speaking, the previous construction only gives
us a map f̂ : 〈P 〉 /H → 〈P 〉. However, it is easy to make it a map 〈P 〉 /H → 〈P 〉 /H by post-composing
by the quotient map (which, in practice we don’t have to do).
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same in the reverse situation (yi > −yi and yi+1 > −yi+1), a fruitless 2-cycle appears with

probability at least 1
2r . Since the algorithm performs optimally for log(r) ≤ 10 (based on

Fig. 1 in [BKL10]), r cannot be to big and thus, this probability is not negligible.

Using a similar approach, it is possible to see that 4-cycles may also appear (though

with a smaller probability). To show that, let’s consider the following notation (mainly

from Bos et al) to make the proof simpler: We attach to each point R(x, y) the signature

+ or − depending on whether y < −y or y > −y and the number i = l (R). We also

denote Si = uiP + viQ. Thus, if a point R has a signature (−, i), then f̂(R) = −R + Si:

we denote it R
(−,i)−→ −R+ Si. For example, the previous case can be rewritten as follows:

R
(+,i)−→ R+ Si

(−,i)−→ −R

or, inverting the signs:

R
(−,i)−→ −R+ Si

(−,i)−→ R

yielding the 2-cycle in 〈P 〉 /H§. Then, using this notation, we can see that a 4-cycle

may appear as follows:

R
(+,i)−→ R+ Si

(−,j)−→ −R− Si + Sj
(+,i)−→ −R+ Sj

(−,j)−→ R

R
(−,i)−→ −R+ Si

(−,j)−→ R− Si + Sj
(+,i)−→ R+ Sj

(−,j)−→ −R

R
(+,i)−→ R+ Si

(+,j)−→ R+ Si + Sj
(−,i)−→ −R− Sj

(+,j)−→ −R

R
(−,i)−→ −R+ Si

(+,j)−→ −R+ Si + Sj
(−,i)−→ R− Sj

(+,j)−→ R

i can be any element in [0, r − 1] and we need j 6= i (hence the factor r−1
2r resulting

from the assumption for the second step). Thus the probability for this 4-cycle to appear

is at least r−1
4r3

.

It can be shown in the same way that more complicated cycle may appear, making

the loop detection rather delicate. The next section presents the heuristic at the center of

[BKL10] to avoid getting trapped in a cycle.

§It is not exactly the same sequence as in [BKL10] since I chose for f̂ the convention defined in the
homework (making f̂ equivariant), which is slightly different from the definition of f̂ in [BKL10]. However,
the principle is strictly the same
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5 Fruitless cycles handling

The following heuristic is from [BKL10], section 3.3.

Heuristic 5.1. A cycle with at least one doubling is most likely not fruitless i.e., a collision

resulting from one such cycle is likely to carry the solution of the discrete log problem.

Proof. The heuristic argument given by Bos et al is little convincing. They consider

starting from a point uP + vQ in the cycle and apply a certain number of times the walk

along with some doubling and negations. Thus, if c doubling are applied along with regular

steps, then, when the walk cycles back to uP + vQ, we obtain the following equality:

uP + vQ = ±2c(uP + vQ) +

r−1∑
i=0

ciuiP + civiQ

The left hand side stands for the original point and the right hand-side stands for a

general expression of the point of the walk after many steps and c doubling (since, by

distributivity, doubling a point in the walk is doubling the initial point and doubling the

sum of everything that was added in the meantime). This leads to the expression:(
(1∓ 2c)u−

r−1∑
i=0

ciui

)
P +

(
(1∓ 2c)v −

r−1∑
i=0

civi

)
Q = 0

The cycle would be fruitless if we could not deduce the discrete logarithm from

the collision, that is if
(

(1∓ 2c)v −
∑r−1

i=0 civi

)
= 0 (which is this case is equivalent to(

(1∓ 2c)u−
∑r−1

i=0 ciui

)
6= 0). What is slightly puzzling is the fact that they can infer

from 1 ∓ 2c 6= 0 (which would be equally true if c = 0) that
(

(1∓ 2c)u−
∑r−1

i=0 ciui

)
“is

most likely not divisible by the group order”.

However, this heuristic argument points out a very interesting fact: doubling has an

multiplicative impact on the quantity
(

(1∓ 2c)v −
∑r−1

i=0 civi

)
while each step has an

additive impact on it. Thus, it seems reasonable to assume that we can prevent it to be

zero by multiplications by 2. Furthermore, as the results in [BKL10] suggest, the method

of doubling performs better than other methods for handling fruitless cycles.

In spite of some puzzling aspect in the heuristic argument given by Bos et al, this

presents us with an interesting and empirically promising method to deal with cycles

using negation map in Pollard-rho algorithm.
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6 Limitation and future work

The main limitation of this result is that, as it is heuristically relying on doubling, it is

harder to implement in an SIMD model (as it would introduce branching in the code unless

all the walks are doubled at the same time, which may not have the expected effect), which

limits its applicability in real situations. This problem is addressed in a paper written by

Bernstein et al ([BLS11]).
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