CS 259C/Math 250: Elliptic Curves in Cryptography Homework 3 Solutions

1. The basic idea of the new signature scheme is that (e, s) can be computed from (R, s) and vice versa, given M. Given M and $\sigma=(R, s)$, we can compute $\sigma^{\prime}=(e, s)$ where

$$
e=H(M \| R)
$$

Given M and $\sigma^{\prime}=(e, s)$, we can compute $\sigma=(R, s)$ where

$$
R=[s] P-[e] Q=[s-a e] P=[k] P=R
$$

Hence, any party can convert a signature from Sign to one from Sign' and vice versa.
(a) According to the note above, $\operatorname{Verify}^{\prime}\left(p k, M, \sigma^{\prime}\right)=\operatorname{Verify}(p k, M, \sigma)$ where $\sigma=$ ($[s] P-[e] Q, s)$. Specifically, Verify' $(p k, M, \sigma)$ works as follows:

1. Compute $R=[s] P-[e] Q$
2. Compute $e^{\prime}=H(M \| R)$
3. Accept if $R+\left[e^{\prime}\right] Q=[s] P$. Note that this condition is equivalent to $e=e^{\prime}$
(b) Suppose we have an adversary A for $\operatorname{Sign}^{\prime}$ with advantage ϵ. We construct B, and adversary for Sign, as follows:
4. On input $p k$, simulate A on $p k$.
5. When A asks for a signature on M, B asks its challenger for a signature on M. When the challenger responds with $\sigma=(R, s)$, compute $e=H(M \| R)$ and send $\sigma^{\prime}=(e, s)$ to A.
6. When A returns a forgery candidate $\left(M, \sigma^{\prime}\right)$ where $\sigma^{\prime}=(e, s), B$ returns (M, σ) where $\sigma=(R, s)$ and $R=[s] P-[e] Q$.
To show that the signatures seen by A are from the same distribution as signatures from Verify', note that the signature queries are answered as follows:
7. B 's challenger chooses a random k and computes $R=[k] P$
8. B 's challenger computes $e=H(M \| R)$
9. B 's challenger sets $s=k+a e$, and sends (R, s) to B.
10. B computes $e^{\prime}=H(M \| R)=e$
11. B returns $\sigma^{\prime}=\left(e^{\prime}, s\right)=(e, s)$ to A.

Hence, this computation is equivalent to the computation of σ^{\prime} from Verify'. This means that the view of A as a subroutine of B is identical to that as an adversary for the modified scheme. Thus, A outputs a valid forgery as a subroutine of B with probability ϵ.
If A outputs a valid forgery $\left(M, \sigma^{\prime}=(e, s)\right)$, it means that A never asked for a signature on M and that $\operatorname{Verify}\left(p k, M, \sigma^{\prime}\right)$ accepts. But this means that B also never asked for a signature on M and that $\operatorname{Ver}(p k, M, \sigma=([s] P-[e] Q, s))=$ $\operatorname{Ver}^{\prime}\left(p k, M, \sigma^{\prime}=(e, s)\right)$ accepts. Hence, (M, σ) is a valid forgery for Sign. Thus, B outputs a valid forgery with probability ϵ, so its advantage is ϵ.
(c) This scheme has the advantage that signatures are two integers mod r (which takes $2 \log r$ bits to represent) as opposed to a point on the curve and a integer $\bmod r$ (which takes $2 \log q+\log r$ bits if we naively encode the point using its x and y coordinates) in the original scheme. Even if we compress the representation of the point to $2 \log q+1$ bits, the modified scheme will still have shorter signatures when r is smaller than q.
2. (a) If an adversary could compute a k such that $R=[k] G$ with x coordinate 0 , then a valid signature on a document m would be

$$
\left(R, k^{-1}(m+a x) \bmod r\right)=\left(R, k^{-1} m \bmod r\right)
$$

This is easily computable for any m.
(b) If $s=0$, then $k^{-1}(m+a x) \bmod r=0$. This means $a=m / x \bmod r$.

$3 .$| Time to solve DLP | Size of p for $E\left(\mathbb{F}_{p}\right)$ | Size of p for \mathbb{F}_{p}^{\times} |
| :---: | :---: | :---: |
| 2^{56} | 2^{112} | 2^{383} |
| 2^{80} | 2^{160} | 2^{853} |
| 2^{112} | 2^{224} | 2^{1859} |
| 2^{128} | 2^{256} | 2^{2547} |
| 2^{192} | 2^{384} | 2^{6732} |
| 2^{256} | 2^{512} | 2^{13599} |

4. (a) We know from the previous homework that if $E\left(\mathbb{F}_{p}\right)$ is supersingular for a prime p, then either $E\left(\mathbb{F}_{p}\right)$ is cyclic or isomorphic to

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{\frac{p+1}{2}}
$$

In the latter case, the entire 2-torsion is contained in $E\left(\mathbb{F}_{p}\right)$. Recall from homework 1 that elements of order 2 are points with y coordinate 0 . The x coordinates are thus solutions to

$$
x^{3}+x=0
$$

One solution is $x=0$, and the other two are solutions to $x^{2}+1=0$. But -1 is not a square $\bmod p($ since p is $3 \bmod 4)$. Therefore, the only point of order 2 in $E\left(\mathbb{F}_{p}\right)$ is $(0,0)$, meaning the 2-torsion is not contained in $E\left(\mathbb{F}_{p}\right)$. Thus $E\left(\mathbb{F}_{p}\right)$ is cyclic.
(b)-(f) I wrote a routine that solves the discrete log problem mod a given integer, assuming that integer divides the order of P.

```
def DLSolve(P,Q,n):
    '''Solve for a mod n where Q=aP, assuming n divides the order of P'''
    k=P.order()
    r = floor (k/n)
    PP=r*P
    QQ=r*Q
    return PP.discrete_log(QQ)
b = DLSolve(P,Q,2); print(b)
c = DLSolve(P,Q,4); print(c)
d = DLSolve(P,Q,3); print(d)
e = DLSolve(P,Q,41); print(e)
a = CRT([c,d,e,s],[4,3,41,t]); print(a)
Q == a*P
```

 1
 1
2
39
777173111634486632508230870388156148825713969641
True

For part (c) we could also have solved for $a \bmod 4$ using part (b). Part (b) tells us that a is odd, so we can write $a=2 a^{\prime}+1$. Then defining $Q^{\prime}=Q-P$, we have $Q^{\prime}=a^{\prime}(2 P)$. We can then solve for $a^{\prime} \bmod 2$, and find that it is equal to 0 . This tells us that $a=1 \bmod 4$.
5. (a) Let m be some integer such that $m^{2} \geq w+1$. Compute and save $[b+i] P$ for all $i \in[0, m-1]$. Now, for each $j \in[0, m-1]$, compute $Q-[m j] P$, and check if it matches one of the stored values. If we have a match, we have

$$
[b+i] P=Q-[m j] P
$$

Therefore $[b+m j+i] P=Q$, so $a=b+m j+i$.
This scheme uses $\log b$ group operations to compute $[b] P$, and then $m \approx \sqrt{w}$ group operations to compute $[b+i] P$ for each i. Then we need to compute $[m] P$ using $\log m$ group operations, and we compute $Q-[m j] P$ for each j using another $m \approx \sqrt{w}$ operations. $\log m \approx \frac{1}{2} \log w$ which is much smaller than \sqrt{w}. Also, $\log b$ is most likely much smaller than \sqrt{w}. Therefore, the total number of group operations is about $2 \sqrt{w}$.
This scheme works because we can write $a=b+a_{0}+m a_{1}$ for some $0 \leq a_{0}, a_{1}<m$. When $i=a_{0}$ and $j=a_{1}$,

$$
Q-[m j] P=[a] P-\left[m a_{1}\right] P=\left[a_{0}\right] P=[i] P
$$

So we have found a match.
Alternatively, we can just compute $Q^{\prime}=Q-[b] P$, and solve $Q^{\prime}=\left[a^{\prime}\right] P$ with a^{\prime} in the interval $[0, w]$ using the standard baby step-giant step algorithm with an upper bound w.
(b) First, compute $Q^{\prime}=Q-[t] P$, which equals $[a-t] P$. Letting $\tilde{a}=a-t$, we are now solving the problem of computing \tilde{a} where $Q^{\prime}=[\tilde{a}] P$ and $\tilde{a} \equiv 0 \bmod m$. That is, $\tilde{a}=m \ell$ for some ℓ

Next, compute $P^{\prime}=[m] P$. We now have $Q^{\prime}=\left[a^{\prime}\right] P^{\prime}$ where $a^{\prime}=\frac{\tilde{a}}{m}=\ell$. We know that

$$
a^{\prime}=\frac{\tilde{a}}{m}=\frac{a-t}{m}<\frac{r}{m}
$$

Therefore, we have reduced this problem to finding the discrete log on an interval of length approximately r / m.
6. (a)

```
def floyd_rho(P,Q):
    '''Compute discrete log using Floyd cycle finding.'''
    # Initialize as above.
    n = P.order()
    walk = walk_setup(P,Q) # set up the walk function
    u0 = randint(1, P.order())
    Xi = (u0*P, u0, 0)
    x2i = xi
    nWalkCalls = 0
    # Repeat until P_i = P_{2i}
    while True:
        # Compute P_{i} and P_{2i}
        Xi = walk(Xi)
        x2i = walk(walk(x2i))
        nWalkCalls += 3
        (Pi, ui, vi) = xi
        (P2i, u2i, v2i) = x2i
        if Pi == P2i:
            if (v2i-vi) % n != 0:
                a = ((ui-u2i)/(v2i-vi)) % n
                return a,nWalkCalls
            else:
                u0 = randint(1, P.order())
                Xi = (u0*P, u0, 0)
                x2i = xi
```

(b)-(c)

```
def distpt_rho(P,Q,d):
    '''Compute discrete log of Q to the base P using distinguished points.
        1/d = probability of hitting a distinguished point'''
    # Initialize as above.
    n = P.order()
    walk = walk_setup(P,Q) # set up the walk function
    u0 = randint(1, P.order())
    xi = (u0*P, u0, 0)
    nWalkCalls = 0
    iterations = 0
    D = {}
    while(True):
        # Iterate the random walk
        xi = walk(xi)
        nWalkCalls += 1
        iterations += 1
        (Pi, ui, vi) = xi
        x = Pi[0]
        # Test for distinguished points
        if }\textrm{ZZ}(\textrm{x})%d==0: # here x is the x-coordinate of P_
            if Pi in D:
                (u, v) = D[Pi]
                if ((v-vi) % n) != 0:
                    a = ((ui-u)/(v-vi)) % n
                    return a,len(D),nWalkCalls
        else:
                D[Pi] = (ui,vi)
            u0 = randint(1, P.order())
            Xi = (u0*P, u0, 0)
            iterations = 0
    elif iterations > 100 * d:
            u0 = randint(1, P.order())
            Xi = (u0*P, u0, 0)
            iterations = 0
```

(d)

```
print(mean([collision_search(P,Q)[1].N() for i in range(1000)])/sqrt(P.order()).N())
print(mean([floyd_rho(P,Q)[1].N() for i in range(1000)])/sqrt(P.order()).N())
print(mean([distpt_rho(P,Q,32)[2].N() for i in range(1000)])/sqrt(P.order()).N())
```

 1.33860182429175
 3.23329579472458
 1.44856888334897
 (e)

```
var('b, c, x')
drange = range(10,51,1)
data = [(d,mean([distpt_rho(P,Q,d)[2].N() for i in range(500)])/sqrt(P.order()).N())
for d in drange]
model(x) =b*x+c
find_fit(data,model)
    [b == 0.010504814963271714, c == 1.1039768365480975]
show(plot( 0.010504814963271714*x+1.1039768365480975,(x,10,50))+list_plot(data))
```


Notice that this plot seems roughly linear in d.
7. (a)

$$
\begin{aligned}
\hat{f}(-R) & =\hat{f}(x,-y)= \begin{cases}f(x,-y) & \text { if }-y<y(\bmod p) \\
f(x, y) & \text { if }-y>y(\bmod p)\end{cases} \\
& = \begin{cases}f(x, y) & \text { if } y>-y(\bmod p) \\
f(x,-y) & \text { if } y<-y(\bmod p)\end{cases} \\
& =\hat{f}(x, y)
\end{aligned}
$$

(b) If \hat{P}_{i} and \hat{P}_{j} have the same x-coordinate, then $\hat{P}_{i}= \pm \hat{P}_{j}$, and we can tell weather it is a plus or minus (by comparing y-coordinates). Thus, we have

$$
u_{i} P+v_{i} Q= \pm\left(u_{j} P+v_{j} Q\right)
$$

This can be rearranged as (assuming $v_{i} \neq \pm v_{j}$):

$$
Q=-\frac{u_{i} \mp u_{j}}{v_{i} \mp v_{j}} P
$$

Hence, we have computed the discrete log.
(c) Before, we were in a space of N objects, the points on the elliptic curve. Now we are in a space of about $N^{\prime}=N / 2$ objects, the x-coordinates of those points. Thus, the average number of iterations is about $c \sqrt{N^{\prime}}=c \sqrt{N / 2}$
(d) Recall that $f(P)=P+M_{x \bmod s}$. Further, $y_{i+1}>-y_{i+1}$, so $\hat{f}\left(P_{i+1}\right)=f\left(-P_{i+1}\right)$. Thus

$$
\begin{aligned}
\hat{P}_{i+2} & =\hat{f}\left(\hat{P}_{i+1}\right)=f\left(-\hat{P}_{i+1}\right)=-\hat{P}_{i+1}+M_{x_{i+1} \bmod s} \\
& =-\hat{f}\left(\hat{P}_{i}\right)+M_{x_{i+1} \bmod s}=-f\left(\pm \hat{P}_{i}\right)+M_{x_{i+1} \bmod s} \\
& =\mp \hat{P}_{i}-M_{x_{i} \bmod s}+M_{x_{i+1} \bmod s}=\mp \hat{P}_{i}
\end{aligned}
$$

Therefore, \hat{P}_{i} and \hat{P}_{i+2} have the same x-coordinate.
(e) Basically, we need to show that the only way to get a cycle of size two is to satisfy the conditions $y_{i+1}>-y_{i+1}$ and $x_{i} \bmod s=x_{i+1} \bmod s$. It is not hard to see that the probability that $x_{i} \bmod s=x_{i+1} \bmod s$ is $1 / s$ if the x-coordinates are random. Combined with the assumption that $y_{i+1}>-y_{i+1}$, the probability of meeting these conditions is $1 / 2 s$.
8. (a) Since ϕ has degree q, according to Washington 3.15, the determinant of ϕ as an endomorhpism on $E[n]$ is $q \bmod n$. This determinant is the product of two eigenvalues α and β. Since $E\left(\mathbb{F}_{q}\right)$ has a point P of order $n, E[n]$ contains a point on $E\left(\mathbb{F}_{q}\right)$, which is fixed by ϕ. This means that P is an eigenvector of ϕ with eigenvalue 1. Thus, the other eigenvalue is q.
(b)

$$
\hat{e}(P, P)=\hat{e}(\phi P, \phi P)=\hat{e}(P, P)^{\operatorname{deg} \phi}=\hat{e}(P, P)^{q}
$$

Thus $\hat{e}(P, P) \in \mathbb{F}_{q}$. Since n is prime, if $\hat{e}(P, P)$ is not 1 , it is a primitive nth root of 1 , and thus all the nth roots of 1 are in \mathbb{F}_{q}, a contradiction. Therefore $\hat{e}(P, P)=1$.
Similarly,

$$
\hat{e}(Q, Q)^{q}=\hat{e}(\phi Q, \phi Q)=\hat{e}(q Q, q Q)=\hat{e}(Q, Q)^{q^{2}}
$$

Thus, the order of $\hat{e}(Q, Q)^{q}$ divides $q-1$. By the same argument as above, this means $\hat{e}(Q, Q)^{q}=1$. However, the order of $\hat{e}(Q, Q)$ is either n or 1 , and n does not divide q, so $\hat{e}(Q, Q)=1$
(c)

$$
\begin{aligned}
\hat{e}((1+\alpha) P,(1+\alpha) P) & =\hat{e}(P, P) \hat{e}(\alpha P, \alpha P) \hat{e}(P, \alpha P) \hat{e}(\alpha P, P) \\
& =\hat{e}(P, P) \hat{e}(P, P)^{\operatorname{deg}} \hat{e} \hat{e}(P, \alpha P) \hat{e}(\alpha P, P) \\
& =\hat{e}(P, \alpha P) \hat{e}(\alpha P, P)
\end{aligned}
$$

But

$$
\hat{e}((1+\alpha) P,(1+\alpha) P)=\hat{e}(P, P)^{\operatorname{deg}(1+\alpha)}=1
$$

Thus $\hat{e}(P, \alpha P))=\hat{e}(\alpha P, P)^{-1}$
(d) Since n is prime and P has order $n, \alpha(P)$ must have order n or order 1. However, since $\alpha(P) \notin\langle P\rangle, \alpha(P)$ must have order n. Thus, P and $\alpha(P)$ must span $E[n]$. Therefore, we can write $T=a P+b \alpha(P)$.

$$
\hat{e}(T, T)=\hat{e}(a P+b \alpha(P), a P+b \alpha(P))=\hat{e}(P, P)^{\operatorname{deg}(a+b \alpha)}=1
$$

(e)

$$
1=\hat{e}(S+T, S+T)=\hat{e}(S, S) \hat{e}(T, T) \hat{e}(S, T) \hat{e}(T, S)=\hat{e}(S, T) \hat{e}(T, S)
$$

9. In lecture, we saw that if $E[r] \nsubseteq E\left(\mathbb{F}_{q}\right)$, then r divides $q^{k}-1$ if and only if $E[r] \subset$ $E\left(\mathbb{F}_{q^{k}}\right)$.
(a)

$$
q^{3}-1=(q-1)\left(q^{2}+q+1\right)=(q-1)(q+\sqrt{q}+1)(q-\sqrt{q}+1)
$$

By assumption, r divides $\# E\left(\mathbb{F}_{q}\right)=q+1 \pm \sqrt{q}$, so r divides $q^{3}-1$
(b)

$$
q^{4}-1=\left(q^{2}-1\right)\left(q^{2}+1\right)=(q+1)(q-1)(q+\sqrt{2 q}+1)(q-\sqrt{2 q}+1)
$$

By assumption, r divides $\# E\left(\mathbb{F}_{q}\right)=q+1 \pm \sqrt{2 q}$, so r divides $q^{4}-1$
(c)

$$
q^{6}-1=\left(q^{3}-1\right)\left(q^{3}+1\right)=\left(q^{3}-1\right)(q+1)(q+\sqrt{3 q}+1)(q-\sqrt{3 q}+1)
$$

By assumption, r divides $\# E\left(\mathbb{F}_{q}\right)=q+1 \pm \sqrt{3 q}$, so r divides $q^{6}-1$

