
CS 259C/Math 250: Elliptic Curves in Cryptography
Homework 3 Solutions

1. The basic idea of the new signature scheme is that (e, s) can be computed from (R, s)
and vice versa, given M . Given M and σ = (R, s), we can compute σ′ = (e, s) where

e = H(M ||R)

Given M and σ′ = (e, s), we can compute σ = (R, s) where

R = [s]P − [e]Q = [s− ae]P = [k]P = R

Hence, any party can convert a signature from Sign to one from Sign′ and vice versa.

(a) According to the note above, Verify′(pk,M, σ′) = Verify(pk,M, σ) where σ =
([s]P − [e]Q, s). Specifically, Verify′(pk,M, σ) works as follows:

1. Compute R = [s]P − [e]Q

2. Compute e′ = H(M ||R)

3. Accept if R + [e′]Q = [s]P . Note that this condition is equivalent to e = e′

(b) Suppose we have an adversary A for Sign′ with advantage ε. We construct B, and
adversary for Sign, as follows:

1. On input pk, simulate A on pk.

2. When A asks for a signature on M , B asks its challenger for a signature on
M . When the challenger responds with σ = (R, s), compute e = H(M ||R)
and send σ′ = (e, s) to A.

3. When A returns a forgery candidate (M,σ′) where σ′ = (e, s), B returns
(M,σ) where σ = (R, s) and R = [s]P − [e]Q.

To show that the signatures seen by A are from the same distribution as signatures
from Verify′, note that the signature queries are answered as follows:

1. B’s challenger chooses a random k and computes R = [k]P

2. B’s challenger computes e = H(M ||R)

3. B’s challenger sets s = k + ae, and sends (R, s) to B.

4. B computes e′ = H(M ||R) = e

5. B returns σ′ = (e′, s) = (e, s) to A.

1

Hence, this computation is equivalent to the computation of σ′ from Verify′. This
means that the view of A as a subroutine of B is identical to that as an adversary
for the modified scheme. Thus, A outputs a valid forgery as a subroutine of B
with probability ε.

If A outputs a valid forgery (M,σ′ = (e, s)), it means that A never asked for a
signature on M and that Verify(pk,M, σ′) accepts. But this means that B also
never asked for a signature on M and that V er(pk,M, σ = ([s]P − [e]Q, s)) =
V er′(pk,M, σ′ = (e, s)) accepts. Hence, (M,σ) is a valid forgery for Sign. Thus,
B outputs a valid forgery with probability ε, so its advantage is ε.

(c) This scheme has the advantage that signatures are two integers mod r (which
takes 2 log r bits to represent) as opposed to a point on the curve and a integer
mod r (which takes 2 log q+log r bits if we naively encode the point using its x and
y coordinates) in the original scheme. Even if we compress the representation of
the point to 2 log q+ 1 bits, the modified scheme will still have shorter signatures
when r is smaller than q.

2. (a) If an adversary could compute a k such that R = [k]G with x coordinate 0, then
a valid signature on a document m would be

(R, k−1(m+ ax) mod r) = (R, k−1m mod r)

This is easily computable for any m.

(b) If s = 0, then k−1(m+ ax) mod r = 0. This means a = m/x mod r.

3.

Time to solve DLP Size of p for E(Fp) Size of p for F×p
256 2112 2383

280 2160 2853

2112 2224 21859

2128 2256 22547

2192 2384 26732

2256 2512 213599

4. (a) We know from the previous homework that if E(Fp) is supersingular for a prime
p, then either E(Fp) is cyclic or isomorphic to

Z2 × Z p+1
2

In the latter case, the entire 2-torsion is contained in E(Fp). Recall from home-
work 1 that elements of order 2 are points with y coordinate 0. The x coordinates
are thus solutions to

x3 + x = 0

One solution is x = 0, and the other two are solutions to x2 + 1 = 0. But −1 is
not a square mod p (since p is 3 mod 4). Therefore, the only point of order 2 in
E(Fp) is (0, 0), meaning the 2-torsion is not contained in E(Fp). Thus E(Fp) is
cyclic.

2

(b)-(f) I wrote a routine that solves the discrete log problem mod a given integer, assum-
ing that integer divides the order of P .

For part (c) we could also have solved for a mod 4 using part (b). Part (b) tells
us that a is odd, so we can write a = 2a′+ 1. Then defining Q′ = Q−P , we have
Q′ = a′(2P). We can then solve for a′ mod 2, and find that it is equal to 0. This
tells us that a = 1 mod 4.

5. (a) Let m be some integer such that m2 ≥ w + 1. Compute and save [b + i]P for all
i ∈ [0,m − 1]. Now, for each j ∈ [0,m − 1], compute Q − [mj]P , and check if it
matches one of the stored values. If we have a match, we have

[b+ i]P = Q− [mj]P

Therefore [b+mj + i]P = Q, so a = b+mj + i.

This scheme uses log b group operations to compute [b]P , and then m ≈
√
w group

operations to compute [b+ i]P for each i. Then we need to compute [m]P using
logm group operations, and we compute Q − [mj]P for each j using another
m ≈

√
w operations. logm ≈ 1

2
logw which is much smaller than

√
w. Also,

log b is most likely much smaller than
√
w. Therefore, the total number of group

operations is about 2
√
w.

This scheme works because we can write a = b+a0+ma1 for some 0 ≤ a0, a1 < m.
When i = a0 and j = a1,

Q− [mj]P = [a]P − [ma1]P = [a0]P = [i]P

So we have found a match.

Alternatively, we can just compute Q′ = Q − [b]P , and solve Q′ = [a′]P with a′

in the interval [0, w] using the standard baby step-giant step algorithm with an
upper bound w.

(b) First, compute Q′ = Q− [t]P , which equals [a−t]P . Letting ã = a−t, we are now
solving the problem of computing ã where Q′ = [ã]P and ã ≡ 0 mod m. That is,
ã = m` for some `

3

Next, compute P ′ = [m]P . We now have Q′ = [a′]P ′ where a′ = ã
m

= `. We know
that

a′ =
ã

m
=
a− t
m

<
r

m

Therefore, we have reduced this problem to finding the discrete log on an interval
of length approximately r/m.

6. (a)

(b)-(c)

4

(d)

(e)

5

Notice that this plot seems roughly linear in d.

7. (a)

f̂(−R) = f̂(x,−y) =

{
f(x,−y) if − y < y (mod p)

f(x, y) if − y > y (mod p)

=

{
f(x, y) if y > −y (mod p)

f(x,−y) if y < −y (mod p)

= f̂(x, y)

(b) If P̂i and P̂j have the same x-coordinate, then P̂i = ±P̂j, and we can tell weather
it is a plus or minus (by comparing y-coordinates). Thus, we have

uiP + viQ = ±(ujP + vjQ)

This can be rearranged as (assuming vi 6= ±vj):

Q = −ui ∓ uj
vi ∓ vj

P

Hence, we have computed the discrete log.

6

(c) Before, we were in a space of N objects, the points on the elliptic curve. Now
we are in a space of about N ′ = N/2 objects, the x-coordinates of those points.
Thus, the average number of iterations is about c

√
N ′ = c

√
N/2

(d) Recall that f(P) = P +Mx mod s. Further, yi+1 > −yi+1, so f̂(Pi+1) = f(−Pi+1).
Thus

P̂i+2 = f̂(P̂i+1) = f(−P̂i+1) = −P̂i+1 +Mxi+1 mod s

= −f̂(P̂i) +Mxi+1 mod s = −f(±P̂i) +Mxi+1 mod s

= ∓P̂i −Mxi mod s +Mxi+1 mod s = ∓P̂i

Therefore, P̂i and P̂i+2 have the same x-coordinate.

(e) Basically, we need to show that the only way to get a cycle of size two is to satisfy
the conditions yi+1 > −yi+1 and xi mod s = xi+1 mod s. It is not hard to see
that the probability that xi mod s = xi+1 mod s is 1/s if the x-coordinates are
random. Combined with the assumption that yi+1 > −yi+1, the probability of
meeting these conditions is 1/2s.

8. (a) Since φ has degree q, according to Washington 3.15, the determinant of φ as
an endomorhpism on E[n] is q mod n. This determinant is the product of two
eigenvalues α and β. Since E(Fq) has a point P of order n, E[n] contains a point
on E(Fq), which is fixed by φ. This means that P is an eigenvector of φ with
eigenvalue 1. Thus, the other eigenvalue is q.

(b)
ê(P, P) = ê(φP, φP) = ê(P, P)deg φ = ê(P, P)q

Thus ê(P, P) ∈ Fq. Since n is prime, if ê(P, P) is not 1, it is a primitive nth
root of 1, and thus all the nth roots of 1 are in Fq, a contradiction. Therefore
ê(P, P) = 1.

Similarly,
ê(Q,Q)q = ê(φQ, φQ) = ê(qQ, qQ) = ê(Q,Q)q

2

Thus, the order of ê(Q,Q)q divides q − 1. By the same argument as above, this
means ê(Q,Q)q = 1. However, the order of ê(Q,Q) is either n or 1, and n does
not divide q, so ê(Q,Q) = 1

(c)

ê((1 + α)P, (1 + α)P) = ê(P, P)ê(αP, αP)ê(P, αP)ê(αP, P)

= ê(P, P)ê(P, P)degαê(P, αP)ê(αP, P)

= ê(P, αP)ê(αP, P)

But
ê((1 + α)P, (1 + α)P) = ê(P, P)deg(1+α) = 1

Thus ê(P, αP)) = ê(αP, P)−1

7

(d) Since n is prime and P has order n, α(P) must have order n or order 1. However,
since α(P) /∈ 〈P 〉, α(P) must have order n. Thus, P and α(P) must span E[n].
Therefore, we can write T = aP + bα(P).

ê(T, T) = ê(aP + bα(P), aP + bα(P)) = ê(P, P)deg(a+bα) = 1

(e)
1 = ê(S + T, S + T) = ê(S, S)ê(T, T)ê(S, T)ê(T, S) = ê(S, T)ê(T, S)

9. In lecture, we saw that if E[r] * E(Fq), then r divides qk − 1 if and only if E[r] ⊂
E(Fqk).

(a)
q3 − 1 = (q − 1)(q2 + q + 1) = (q − 1)(q +

√
q + 1)(q −√q + 1)

By assumption, r divides #E(Fq) = q + 1±√q, so r divides q3 − 1

(b)

q4 − 1 = (q2 − 1)(q2 + 1) = (q + 1)(q − 1)(q +
√

2q + 1)(q −
√

2q + 1)

By assumption, r divides #E(Fq) = q + 1±
√

2q, so r divides q4 − 1

(c)

q6 − 1 = (q3 − 1)(q3 + 1) = (q3 − 1)(q + 1)(q +
√

3q + 1)(q −
√

3q + 1)

By assumption, r divides #E(Fq) = q + 1±
√

3q, so r divides q6 − 1

8

