
CS 259C/Math 250: Elliptic Curves in Cryptography

Homework #3

Due November 9, 2011

Solutions must be handed in in class, handed to Mark (494 Gates), or emailed to Mark (zhandry
at cs.stanford.edu) by 4pm on the due date.

Use of SAGE is allowed on any problem. If you use SAGE you must show your work by attaching
your computations to the solutions you turn in. Use of LaTeX is encouraged but not required.

1. (8 points) A variant of Schnorr signatures. Let Gen be the key generation algorithm
for the Schnorr signature scheme. Let pk = (P,Q,H) and sk = a be public and secret keys
output by Gen(). (See http://cs259c.stanford.edu/lectures/schnorr.pdf for details.)
Consider the following variant of the Schnorr signing algorithm:

Algorithm Sign′(pk,M):

1. Choose random k
R← [1, r] and set R = [k]P .

2. Set e = H(M‖R).

3. Set s = k + ae (mod r).

4. Output the signature σ = (e, s).

(a) Describe a Verify′ algorithm such that (Gen,Sign′,Verify′) satisfies the correctness re-
quirement for a signature scheme.

(b) Show that if the original Schnorr signature scheme is secure, then so is the variant
(Gen,Sign′,Verify′). (For the definition of security, see http://cs259c.stanford.edu/

lectures/boneh-shoup-digsigs.pdf.)

Specifically, show that if there an efficient adversary A that can forge a signature for
the variant with probability ε, then there is an efficient adversary B that uses A to forge
a signature for the original scheme with probability ε. Adversary B plays the security
game with a challenger for the original scheme. When interacting with A, adversary B
will act as a challenger for the variant. You will need to show the following:

• How to transform a signature the challenger gives to B into a valid signature for the
variant.

• That signatures that B gives to A come from the same distribution as real signatures
for the variant.

• How to use a forgery produced by A to construct a forgery for the original Schnorr
scheme.

1

http://cs259c.stanford.edu/lectures/schnorr.pdf
http://cs259c.stanford.edu/lectures/boneh-shoup-digsigs.pdf
http://cs259c.stanford.edu/lectures/boneh-shoup-digsigs.pdf


You may assume that A and B have direct access to the hash function H (i.e., there are
no “random oracles”).

(c) Give a reason for using the variant instead of the original Schnorr signature scheme.

2. (4 points) Breaking ECDSA. We use the notation of Washington Section 6.6.

(a) The case where R has x-coordinate equal to 0 is prohibited in ECDSA signatures. Show
that if this check was omitted and if an adversary could find an integer k such that [k]G
has x-coordinate zero (for example, if P itself has x-coordinate zero and k = 1), then
the adversary could forge ECDSA signatures for any message.

(b) The case s = 0 is prohibited in ECDSA signatures since the Verify algorithm fails when
s is not invertible. Show that if a signer outputs a signature (R, s) produced by the Sign
algorithm with s = 0 then an adversary would be able to determine the private key a.

3. (3 points) Comparable key sizes. The best algorithms for computing discrete logs in
elliptic curve groups E(Fp) take time approximately p1/2. In contrast, the best algorithms
for computing discrete logs in F×p take time approximately

e1.92(log p)
1/3(log log p)2/3 .

Complete the table below that shows (roughly) how large to choose finite fields for different
security levels. (Express the field sizes in the form p ≈ 2n.)

Time to solve Size of p for Size of p for
discrete log problem E(Fp) F×p

256 p ≈ 2112 p ≈ 2383

280

2112

2128

2192

2256

In practice, recommended bit sizes (i.e., log2 q) for F×q are about 20% larger than the values
computed above. The values in this table suggest why elliptic curve cryptography has become
so popular — key sizes can be dramatically shorter for the same level of security.

4. (6 points) The Pohlig-Hellman method. Let E be the elliptic curve y2 = x3 + x over Fp,
where p = 1461501637330902918203684832716283019655973349331. This curve is supersin-
gular, with

#E(Fp) = p+ 1 = 22 · 3 · 41 · 2970531783192892110170091123407079308243848271.

Let P,Q ∈ E(Fp) be given by

P = (916695884547111349904583025841061270186986038721,

580841286046155102637492926195177127992061729856)

Q = (1299635880259853636262044538415126323429627504320,

1120139906107476246466144743069490058897077692330).

2



(These points are already entered in the SAGE worksheet “Homework3,” available on the
course website.) Let a be an integer in [1, q + 1] such that Q = [a]P .

(a) Without using a computer, show that E(Fp) is cyclic. You may assume the result of
problem 3(e) on Homework #2. (Hint: −1 is not a square mod p.)

(b) Compute a mod 2.

(c) Use the result of (4b) to compute a mod 4.

(d) Compute a mod 3.

(e) Compute a mod 41.

(f) Suppose you happen to know that

a = 1864316221141791753837087178908449374069570910

mod 2970531783192892110170091123407079308243848271.

Using this information and the results above, compute a. (The SAGE command CRT

will be helpful here.) Use SAGE to confirm that [a]P = Q.

5. (4 points) Discrete log in an interval. Suppose one is given an point P of order r on an
elliptic curve E(Fq) and integers b, w ∈ [0, r]. The DLP in an interval of length w is: Given
P,Q such that Q = [a]P for some a ∈ [b, b+ w], find a.

(a) Describe a baby step-giant step algorithm for computing a using approximately
√
w

group operations and
√
w group elements of storage.

(b) Suppose one is given P,Q ∈ E(Fq) and integers t,m such that Q = [a]P for some integer
a satisfying a ≡ t (mod m). Show how to reduce this problem to the problem of solving
a DLP in an interval of length approximately r/m.

6. (14 points) Implementing Pollard’s rho method. Let p = 1048583 and E/Fp be given
by y2 = x3 + 183801x+ 823458. Let P,Q ∈ E(Fp) be given by

P = (580655, 963078), Q = (774292, 954498).

Let a be the discrete logarithm of Q to the base P ; i.e., Q = [a]P .

The SAGE worksheet “Homework3” contains a function collision search that runs the
Pollard rho algorithm, stores all of the computed points, and searches the list for a collision
at each step. Using this code as a base, write programs that do the following:

(a) Use Floyd cycle finding to find a collision with almost no storage: at each iteration use
Pi and P2i to compute Pi+1 and P2i+2. Repeat until Pi = P2i. Output the discrete
logarithm a and the total number of times the walk function is called.

(b) Use distinguished points to find a collision with a small amount of storage: at each
iteration check to see if the x-coordinate of Pi is 0 mod d, where d is an input to the
function. If so, we say Pi is a distinguished point, and we store Pi in a list and start over
with a new random P0. Repeat until a distinguished point is found that is already in
the list. Output the discrete logarithm a, the number of distinguished points found, and
the total number of times the walk function is called. Test your function using d = 32.

3



(c) There is a possibility that the walk in (6b) will enter a cycle that has no distinguished
points, in which case the algorithm will not terminate. Add to the algorithm a way of
detecting and escaping such cycles at little additional cost.

(d) Run collision search and each of the algorithms from (6a) and (6c) 1000 times and
compute the average number of iterations. (Use d = 32 in (6c).) Write the number of
iterations as c

√
N where N is the order of P . How do these values compare with the

theoretical values of c = 3.093 (for (6a)) or c = 1.253 (for (6c))?

(e) (Bonus, 2 points.) In your algorithm from (6c), how does the average number of steps
vary as you vary the probability 1/d of hitting a distinguished point?

7. (10 points) Improving Pollard rho. Let P,Q be points on E(Fp) with Q = [a]P . Suppose
that when running our pseudorandom walk f , instead of looking for a collision where Pi = Pj ,
we look for a collision where the x-coordinates of Pi and Pj are the same.

If we wish to use this technique to find cycles, our walk function f has to be a function of
x-coordinates only. The standard way to address this issue is to use the random walk function

f̂(x, y) =

{
f(x, y) if y < −y (mod p)
f(x,−y) if y > −y (mod p)

(Testing whether a < b (mod p) means representing a and b as integers in [0, p − 1] and
comparing these integers.)

Fix a small s and points M0, . . . ,Ms−1. Suppose f(x, y) is defined by f(x, y) = (x, y) +
Mx mod s. Let P̂0 = P and P̂i+1 = f̂(P̂i).

(a) Show that for any R ∈ E(Fp), we have f̂(R) = f̂(−R). Thus f̂ is a function of x-
coordinates only.

(b) Suppose that P̂i = uiP + viQ and P̂j = ujP + vjQ for known values of ui, vi, uj , vj . (It

is easy to keep track of these values when using the function f̂ .) Suppose that P̂i and P̂j

have the same x-coordinates. Show how to use this information to compute (with high
probability) the discrete log a.

(c) Let c
√
N be the average number of iterations needed to find a collision of points in the

usual rho algorithm using the function f . Estimate the average number of iterations
needed to find a collision in x-coordinates only using the function f̂ .

(d) Suppose P̂i = (xi, yi) and P̂i+1 = (xi+1, yi+1) satisfy

yi < −yi, yi+1 > −yi+1, xi mod s = xi+1 mod s.

Show that P̂i+2 has the same x-coordinate as P̂i, so there is a cycle of size 2.

(e) Write P̂i = (x, y). Show, under the assumptions that the function P̂i 7→ (x mod s) is
perfectly random and that y < −y with probability 1/2, that the probability that P̂i

leads to a cycle of size 2 is 1/2s.

The problem of avoiding such “useless cycles” is a tricky one, and until recently the methods of
solving the problem required more computation than was saved by searching on x-coordinates
only!

4



8. (10 points) Pairings. Let E/Fq be an elliptic curve and let n be a prime not dividing q.
Suppose that E(Fq) contains a point of order n. Let φ be the q-Frobenius endomorphism.

(a) Show that φ acting on E[n] has eigenvalues of 1 and q (mod n). (Hint: Washington
Proposition 3.15.)

Now let ê : E[n] × E[n] → µn be a pairing that satisfies properties (1) and (6) on p. 87 of
Washington. (In particular, ê is not assumed to satisfy properties (2)–(5).)

(b) Let P and Q be points of order n that are eigenvectors for φ with eigenvalues 1 and q
respectively. Show that if µn 6⊂ Fq, then ê(P, P ) = 1 and ê(Q,Q) = 1.

A distortion map for P is an endomorphism α such that α(P ) 6∈ 〈P 〉. Suppose P ∈ E(Fq)
has order n and α is a distortion map for P . Let ê be as above and assume µn 6⊂ Fq.

(c) Show that ê(P, α(P )) = ê(α(P ), P )−1. (Hint: consider the endomorphism 1 + α.)

(d) Show that ê(T, T ) = 1 for all T ∈ E[n].

(e) Show that ê(S, T ) = ê(T, S)−1 for all S, T ∈ E[n].

Since supersingular curves always have distortion maps, it follows from these results that in
most cases the modified Tate pairing (Washington Section 3.4) is in most cases antisymmetric
on supersingular curves

9. (6 points) Embedding degrees of supersingular curves. Let E/Fq be an elliptic curve
with #E(Fq) = q+ 1− t. Let r ≥ 5 be a prime dividing #E(Fq). The embedding degree of E
with respect to r is the minimal k such that E[r] ⊂ E(Fqk). By Washington Corollary 3.11,

this implies that r divides qk − 1.

Assume that E[r] 6⊂ E(Fq). Show the following:

(a) If t = ±√q, then E has embedding degree at most 3 with respect to r. (This case can
only occur if q is a square.)

(b) If t = ±
√

2q, then E has embedding degree at most 4 with respect to r. (This case can
only occur if q is a power of 2.)

(c) If t = ±
√

3q, then E has embedding degree at most 6 with respect to r. (This case can
only occur if q is a power of 3.)

In addition, we already know that:

• If t = 0, then E has embedding degree 2 with respect to r. (Washington Proposition
5.3.)

• If t = ±2
√
q, then E has embedding degree 1 with respect to r. (Washington Exercise

4.14; this case can only occur if q is a square.)

Since these are all the possible values of t for supersingular curves (see Washington Theorem
4.3), we conclude that if E is supersingular, then E has embedding degree at most 6 with
respect to r.

5


