
CS 259C/Math 250: Elliptic Curves in Cryptography
Homework 3 Solutions

1. (a)

Enc(pp, QA, QB,M) = ([c]P,Mγ) where c
R← [1, n] and γ = ê(QA, QB)c

DecA(pp, a, (c1, c2)) = c2γ
−1
A where γA = ê(c1, QB)a

DecB(pp, b, (c1, c2)) = c2γ
−1
B where γB = ê(QA, c1)

b

If (c1, c2) = ([c]P,Mγ) where γ = ê(QA, QB)c, then

γ = ê(QA, QB)c = ê([a]P, [b]P)c = ê(P, P)abc

γA = ê(c1, QB)a = ê([c]P, [b]P)a = ê(P, P)abc = γ

γB = ê(QA, c1)
b = ê([a]P, [c]P)b = ê(P, P)abc = γ

Thus, both decryption algorithms correctly recover M

(b) Suppose there is an adversary A with advantage at least ε in the real-or-random
game. Then we can construct the following algorithm B which solves the BDDH
problem:

* On input (P,Q,R, S, γ), send (P,Q,R) to A, where Q is interpreted as QA

and R is interpreted as QB.

* When A send the challenge plaintext M , respond with (S,Mγ) as the chal-
lenge ciphertext.

* Output the output of A
Since Q = QA = [a]P and R = QB = [b]P for random a, b, the public parameters
seen by A are distributed as they would be in the real-or-random game. If γ =
ê(P, P)abc where S = [c]P , then the challenge ciphertext (S,Mγ) = ([c]P,Mγ) is
a correctly distributed encryption of M since c is random. Hence,

Pr[B = 1|γ = ê(P, P)abc] = Pr[A = 1|real encryption]

If γ is random, then denote M ′ = Mγê(P, P)−abc. Since γ is random, M ′ is a
random message. Further, (S,Mγ) = ([c]P,M ′ê(P, P)abc), which is a correctly
distributed encryption of the random message M ′. Hence,

Pr[B = 1|γ R← µn] = Pr[A = 1|random encryption]

Thus, the advantage of B in the BDDH game is identical to the advantage of A
in the real-or-random game. Specifically, the advantage is at least ε.

1

(c)

Enc(pp, Q1, ..., Q`,M) = ([r]P,M, γ) where r
R← [1, n] and γ = ê(Q1, ..., Q`)

r

Deci(pp, ai, (c1, c2)) = c2γ
−1
i where γi = ê(Q1, ..., Qi−1, c1, Qi+1, ..., Q`)

ai

If (c1, c2) = ([r]P,Mγ) where γ = ê(Q1, ..., Q`)
r, then

γ = ê(Q1, ..., Q`)
r = ê(P, ..., P)a1...a`r

γi = ê(Q1, ..., Qi−1, [r]P,Qi+1, ..., Q`)
ai = ê(P, ..., P)a1...a`r = γ

Thus all decryption algorithms correctly recover M .

(d) Add random points Ri to the public parameters for each i ∈ [1, `]. Let Ti(S) = Qi

if i ∈ S, and Ri otherwise. Then,

Enc(pp, {Qi}, S,M) = ([r]P,M, γ) where r
R← [1, n] and γ = ê(T1(S), ..., T`(S))r

Deci(pp, ai, (c1, c2)) = c2γ
−1
i where γi = ê(T1, ..., Ti−1, c1, Ti+1, ..., T`)

ai

This encryption looks like the encryption using the scheme from (c) of a message to
parties holding ti, where ti = ai if i ∈ S, and ti = ri otherwise, where Ri = [ri]P .
If i ∈ S, then party i belongs to this set of parties. If i /∈ S, then party i does not
belong to this set of parties, since their ai is completely independent of ti = ri.
Thus, the security of this scheme reduces to the security of the scheme from (c).

2. Suppose we have an adversary A that wins the signature game with probability at
least ε. That is, with probability at least ε, A outputs (m∗, σ∗) such that, if we
choose a random m̃ and interpret m∗ as an ID id∗ and σ∗ as a secret key sk∗, then
Dec(pp,Enc(pp, id∗, m̃), sk∗) = m̃

Now, we construct an algorithm B that breaks the underlying IBE. B works as follows:

– On input pp, send pkS = pp to A.

– When A asks for a signature on a message m, interpret m as an ID id. Then
query the extraction oracle on id, getting back a secret key skid. Return to A the
signature σ = skid.

– When A produces a forgery candidate (m∗, σ∗), generate a random message m̃,
interpret m∗ as the ID id∗, and send (id∗, m̃) as the challenge query.

– When the challenger responds with the ciphertext c, interpret σ∗ as the secret key
sk∗, and check that Dec(pp, c, sk∗) = m̃. If so, output 1, otherwise output 0.

pkS is generated the same way as it is in the standard signature game. Further, signa-
ture queries are answered the same way as well. Thus, the view of A as a subroutine of
B is identical to that in the standard signature game. Suppose the challenger encrypts
the message m̃. Then, since m̃ is chosen randomly, with probability at least ε,

Dec(pp, c, sk∗) = Dec(pp,Enc(pp, id∗, m̃), sk∗) = m̃

2

This means that with probability at least ε, B outputs 1.

Now, suppose the challenger decided to encrypt a random message M . Then

Dec(pp, c, sk∗) = Dec(pp,Enc(pp, id∗,M), sk∗)

This quantity is completely independent of m̃. Thus, suppose it evaluates to some
message M ′ (it may actually fail to decrypt, but that only helps us), which depends
on M , sk∗, and id∗. Then, the probability that M ′ = m̃ is 1/r since m̃ is chosen
independently of M , sk∗, and id∗, and is chosen uniformly in a space of r elements. If
the decryption fails, the probability is 0. Thus the probability that the decryption is
equal to m̃ is at most 1/r, meaning B outputs 1 with probability 1/r.

If we assume 1/r < ε, the advantage of B is thus at least ε− 1/r.

Bonus: We need the verification algorithm to be randomized for the last step of the
proof, where we argue that the probability of the encryption of a random message
decrypting to m̃ is at most 1/r. If the verification algorithm used a specific message,
say 0, then m̃ = 0, and is thus not drawn from a set of size r.

To see that the proof cannot be fixed in this case, start with a secure IBE scheme
(Gen,Extract,Enc,Dec), and construct the following modified IBE (Gen′,Extract′,Enc′,Dec′):

– Gen′() = Gen() is the same.

– Extract′(pp,mk, id) = Extract(pp,mk, id)||0 is the same, except with the bit 0 ap-
pended to the end.

– Enc′(pp, id,m) = Enc(pp, id,m) is the same.

– Dec′(pp, c, sk||b) = Dec(pp, c, sk) if b = 0, and 0 if b = 1. This decrypts correctly
if b = 0, and simply outputs 0 if b = 1.

It is easy to see that the security and correctness of this scheme reduce to that of the
underlying IBE. However, now follow the signature construction using this IBE, and
suppose that our verification algorithm only tests the message 0, instead of a random
message. An adversary can now sign any message m with the signature sk||1, where sk
is any random junk. Since decryption with this secret key will always produce 0, the
verification algorithm will always accept.

3. (a) Recall that φpi = φip, and that a point Q is in E(Fpi) if and only if φpiQ = φipQ =
Q. Let φ denote φp.

Let P ∈ E(Fpk) (and thus φkP = P), and let Q = Tr(P).

φQ = φTr(P) = φ

k−1∑
i=0

φiP =
k∑
i=1

φiP =
k−1∑
i=1

φiP + φkP

=
k−1∑
i=1

φiP + P =
k−1∑
i=0

φiP = Tr(P) = Q

Thus, Q = Tr(P) ∈ E(Fp)

3

(b) Suppose P ∈ E[n] has eigenvalue p. Recall that n|pk − 1. Then

(p− 1)Tr(P) = (p− 1)
k−1∑
i=0

φiP = (p− 1)
k−1∑
i=0

piP

= (p− 1)

(
k−1∑
i=0

pi

)
P = (pk − 1)P =∞

Thus, Tr(P) is a point of order dividing p − 1. Tr(P) is also a point of order
dividing n (since P ∈ E[n]), and n is prime, so the order of Tr(P) is either 1 or
n. However, since the embedding degree of n is at least 2, n - p − 1. Hence, the
order of Tr(P) is 1, and hence Tr(P) =∞.

(c) Let ψ(P) = kP − Tr(P). Clearly, ψ is a homomorphism, so it satisfies ψ(aQ +
bR) = aψ(Q) + bψ(R). Let Q be an eigenvector of φ with eigenvalue 1, and R
be an eigenvector with eigenvalue p. Then we can write any point P ∈ E[n] as
aQ+ bR. Note that:

ψ(Q) = kQ− Tr(Q) = kQ−
k−1∑
i=0

φiQ = kQ−
k−1∑
i=0

Q = kQ− kQ =∞

ψ(R) = kR− Tr(R) = kR−∞ = kR

Thus, ψ(P) = aψ(Q) + bψ(R) = kbR, and therefore

φψ(P) = φ(kbR) = kbpR = pψ(P)

So as long as ψ(P) 6= 0, ψ(P) has eigenvalue p.

(d) Let R = aP + bQ where Q is an eigenvector of φ with value p.

en(P,R) = en(P, aP + bQ) = en(P, P)aen(P,Q)b = en(P,Q)b

Therefore, since n is prime, en(P,R) is a generator as long as b 6= 0.

Tr(R) = aTr(P) + bTr(Q) = akP + b∞ = akP

Therefore, since n - k, Tr(R) 6=∞ as long as a 6= 0. Since n is prime, this implies
that the image of Tr over GR is a group of order n, so it must be all of G1. Since
GR and G1 both have n elements, it must also be a bijection.

Hence, as long as a, b 6= 0, both conditions are met. Since R is chosen randomly, a
and b are random in [1, n], so the conditions are met with probability (1− 1/n)2.

4. (a) Dec(sk, A,B) = log[c−ab]P ([c]A − [a]B) where log is your favourite discrete log
algorithm.

If (A,B) is an encryption of m, then A = [m]P + [r]Q = [mb + ar]P and B =
[m]R + [r]S = [mb + cr]P . Then [c]A − [a]B = [cm + acr − mbc − acr]P =
[m][c− ab]P , so m = log[c−ab]P ([c]A− [a]B).

4

(b) Suppose we have an adversary A with a real-or-zero advantage at least 2ε. Let
Bi for i = 0, 1 be the following DDH algorithms:

* On input (P,Q,R, S), run A with public key (P,Q,R, S).

* When A produces the challenge plaintext m, generate random r. If i = 0,
return ([m]P +[r]Q, [m]R+[r]S) the proper encryption of m. If i = 1, return
([r]Q, [r]S), the proper encryption of 0.

* When A outputs a bit b, return that bit.

Let’s call the public key (P,Q,R, S) = (P, [a]P, [b]P, [c]P) good if c 6= ab and bad
if c = ab. Let’s consider four scenarios:

* pk is good, and the challenger for A outputs an encryption of m. This is
identical to the case where B0 received a DDH tuple with c 6= ab.

* pk is good, and the challenger for A outputs an encryption of 0, that is
([r]Q, [r]S). This is identical to the case where B1 received a DDH tuple with
c 6= ab.

* pk is bad, and the challenger for A outputs an encryption of a m. This is
identical to the case where B0 received a DDH tuple with c = ab. Note that
the ciphertext in this case is

([m]P+[r]Q, [m]R+[r]S) = ([m+ar]P, [mb+rab]P) = ([m+ar]P, [b][m+ar]P)

Since the order of P is a prime n, m + ar is a random element mod n (as
long as a 6= n. a = n with only negligible probability, and in that case we
could easily break the scheme anyway). Thus, the ciphertext is equivalent to
([r′]P, [b][r′]P) for a random r′.

* pk is bad, and the challenger for A outputs an encryption of 0. This is
identical to the case where B1 received a DDH tuple with c = ab. Note
that the ciphertext is ([r]Q, [r]S) = ([ra]P, [rab]P) = ([ra]P, b[ra]P). Again,
unless a = 0, ra is a random element mod n, so the ciphertext is equivalent
to ([r′]P, [b][r′]P) for random r′. Therefore, B0 and B1 behave identically if
c = ab.

We can now present a hybrid argument:

2ε < Adv(A) = |Pr[A = 1|Enc(m), good pk]− Pr[A = 1|Enc(0), good pk]|
< |Pr[A = 1|Enc(m), good pk]− Pr[A = 1|Enc(m), bad pk]|

+ |Pr[A = 1|Enc(m), bad pk]− Pr[A = 1|Enc(0), good pk]|
= |Pr[A = 1|Enc(m), good pk]− Pr[A = 1|Enc(m), bad pk]|

+ |Pr[A = 1|Enc(0), bad pk]− Pr[A = 1|Enc(0), good pk]|
= Adv(B0) + Adv(B1)

Therefore, at least one of Adv(B0) and Adv(B1) is greater that ε, a contradiction
to our assumption that DDH is hard.

5

(c) Add((A1, B1), (A2, B2)) = (A1 + A2 + [r]Q,B1 + B2 + [r]S) for a randomly gen-
erated r. If (A1, B1) = ([m1]P + [r1]Q, [m1]R + [r1]S) and (A2, B2) = ([m2]P +
[r2]Q, [m2]R + [r2]S), then adding the two encryption gives:

([m1 +m2]P + [r1 + r2 + r]Q, [m1 +m2]R + [r1 + r2 + r]S)

This is the encryption of m1 + m2 with randomness r′ = r1 + r2 + r. Since r is
generated randomly, r′ is random, and independent of r1 and r2, as desired.

(d) Suppose

(A,B) = ([m1]P + [r1]Q, [m1]R + [r1]S) = ([m1 + ar1]P, [bm1 + cr1]P)

(C,D) = ([m2]P
′ + [r2]Q

′, [m2]R
′ + [r2]S

′) = ([m2 + a′r2]P
′, [b′m2 + c′r2]P

′)

For notational convenience, let

s = en(P, P ′)m1m2

t = en(P, P ′)r1m2

u = en(P, P ′)m1r2

v = en(P, P ′)r1r2

Notice that

w = en(A,C) = en(P, P ′)(m1+ar1)(m2+a′r2) = staua
′
vaa

′

x = en(A,D) = en(P, P ′)(m1+ar1)(b′m2+c′r2) = sb
′
tab
′
uc
′
vac
′

y = en(B,C) = en(P, P ′)(bm1+cr1)(m2+a′r2) = sbtcua
′bva

′c

z = en(B,D) = en(P, P ′)(bm1+cr1)(b′m2+c′r2) = sbb
′
tb
′cubc

′
vcc
′

Our goal now is to eliminate t, u, v (which are unknown) to recover s. This is ac-
tually a linear algebra problem, where s, t, u, v are unknown vectors, and we know
specific linear combinations of them (where vector addition is multiplication, and
scalar multiplication is exponentiation). Our goal is to, knowing the coefficients
in the linear combination, recover the vectors. Using standard techniques, we can
get that

en(P, P ′)m1m2 = s = w
cc′

(c−ab)(c′−a′b′)x
−a′c

(c−ab)(c′−a′b′)y
−ac′

(c−ab)(c′−a′b′) z
aa′

(c−ab)(c′−a′b′)

Where the arithmetic in the exponents is carried out mod n.

5. (a) We know that the only possibilities for #E(F2d) are 2d+1− t with t = 0,±
√

2d(if
d is even),±

√
2× 2d(if d is odd). In the first and second case, we know the

embedding degree is at most 2 and 1, respectively. Therefore, we will need to look
at the third case. We will need to choose an odd d such that one of 2d+1±

√
2d+1

has a large prime factor r > 2160 (which will mean there is a subgroup of size r),
and for which the embedding degree of r is 4. This last condition is equivalent to

6

r - 2d− 1, r - 22d−1− 1 = (2d− 1)(2d + 1), and r - 23d− 1 = (2d− 1)(22d + 2d + 1).
Since r is prime, this is equivalent to checking if r - (23d − 1)(2d + 1).

We also need 24d > 21000, or d > 250, for the output of the Weil pairing to not take
values in any field of size ≤ 21000. Once we’ve found d and r, we just need to find
a curve with the specified number of elements. Therefore, we get the following
algorithm:

Notice that we only look for A ∈ F(2) and only check the minus solution. Running
this algorithm for base 2 with the minimum values specified, we get

Therefore, with d = 253, and A = 1, we get a curve with a subgroup of order
621109541542884571802304568790331501283098925929529. Now we just need to
check that r - (23d − 1)(2d + 1):

(b) Here, we have the same reasoning, except that now we are looking for a curve with

3d + 1±
√

3d+1. Since we want the embedding degree of r to be 6, we must check
that r - 3d − 1, r - 32d − 1 = (3d − 1)(3d + 1), r - 33d − 1 = (3d − 1)(32d + 3d + 1),
r - 34d−1 = (3d−1)(3d+1)(32d+1), and r - 35d−1 = (3d−1)(34d+33d+32d+3d+1).
This is equivalent to r - (35d− 1)(32d + 3d + 1)(32d + 1)(3d + 1). Now, rather than
have 4d > 1000, we only need 6d > 1000, so d > 166:

7

Therefore, with d = 167, A = 2, we get a curve with a subgroup of order
135178432469278085190543632884974507130517958441098016641911005557482339.
Now we just need to check that r - (35d − 1)(32d + 3d + 1)(32d + 1)(3d + 1):

(c) Suppose p(α) > 25, meaning p(α) > 4
√
p(α)+1. Then since r(α) = p(α)−6α2 >

p(α)−
√
p(α), we have that 2r(α) > 2p(α)−2

√
p(α) > p(α)+2

√
p(α)+1, meaning

2r(α) is not a possibility for the number of points on an elliptic curve over Fp(α)
(an similarly, no higher multiple is either). Therefore, to test if the order of
E(Fp(α)) is r(α), we only need to check if a non-infinity element has order r(α),
or equivalently, if [r(α)]P =∞. This gives us the following algorithm:

Thus, α = 9223372036854776665 gives us prime r(α) and p(α), and B = 12 gives
us a curve with order r(α). To check that the embedding degree is 12:

8

