
Theorem statements from Chapter 2 of Washington

GROUP LAW. Let E be an elliptic curve defined by y2 = x3 + Ax + B. Let P1 = (x1, y1) and
P2 = (x2, y2) be points on E with P1, P2 6=∞. Define P1 + P2 = P3 = (x3, y3) as follows:

1. If x1 6= x2 then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, where m =
y2 − y1
x2 − x1

.

2. If x1 = x2 but y1 6= y2, the P1 + P2 =∞.

3. If P1 = P2 and y1 6= 0, then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1, where m =
3x21 +A

2y1
.

4. If P1 = P2 and y1 = 0, then P1 + P2 =∞.

Moreover, define
P +∞ = P

for all points P on E.

THEOREM 2.1. The addition of points on an elliptic curve E satisfies the following properties:

1. (commutativity) P1 + P2 = P2 + P1 for all P1, P2 on E.

2. (existence of identity) P +∞ = P for all points P on E.

3. (existence of inverse) Given P on E, there exists P ′ on E with P + P ′ = ∞. This point P ′

will usually be denoted −P .

4. (associativity) (P1 + P2) + P3 = P1 + (P2 + P3) for all P1, P2, P3 on E.

In other words, the points on E form an additive abelian group with ∞ as the identity element.

INTEGER TIMES A POINT. Let k be a positive integer and let P be a points on an elliptic
curve. The following procedure computes kP .

1. Start with a = k,B =∞, C = P .

2. If a is even, let a = a/2, and let B = B,C = 2C.

3. If a is odd, let a = a− 1, and let B = B + C,C = C.
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4. If a 6= 0, go to step 2.

5. Output B.

The output B is kP (see Exercise 2.8).

LEMMA 2.2. Let G(u, v) be a nonzero homogeneous polynomial and let (u0 : v0) ∈ P1
k. Then

there exists an integer k ≥ 0 and a polynomial H(u, v) with H(u0, v0) 6= 0 such that

G(u, v) = (v0u− u0v)kH(u, v).

LEMMA 2.3. Let L1 and L2 be lines intersecting in a point P , and, for i = 1, 2, let Li(x, y, z) be
a linear polynomial defining Li. Then ordL1,P (L2) = 1 unless L1(x, y, z) = αL2(x, y, z) for some
constant α, in which case ordL1,P (L2) =∞.

DEFINITION 2.4. A curve C in P2
K defined by F (x, y, z) = 0 is said to be nonsingular at a

point P if at least one of partial derivatives Fx, Fy, Fz is nonzero at P .

LEMMA 2.5. Let F (x, y, z) = 0 define a curve C. If P is a nonsingular point of C, then there is
exactly one line in P2

K that intersects C to order at least 2, and it is the tangent to C at P .

THEOREM 2.6. Let C(x, y, z) be a homogeneous cubic polynomial, and let C be the curve in
P2
K described by C(x, y, z) = 0. Let `1, `2, `3 and m1,m2,m3 be lines in P2

K such that `i 6= mj for
all i, j. Let Pij be the point of intersection of `i and mj. Suppose Pij is a nonsingular point on
the curve C for all (i, j) 6= (3, 3). In addition, we require that if, for some i, there are k ≥ 2 of
the points Pi1, Pi2, Pi3 equal to the same point, then `i intersects C to order at least k at this point.
Also, if, for some j, there are k ≥ 2 of the points P1j , P2j , P3j equal to the same point, then mj

intersects C to order at least k at this point. Then P33 also lies on the curve C.

LEMMA 2.7. Let R(u, v) and S(u, v) be homogeneous polynomials of degree 3, with S(u, v) not
identically 0, and suppose there are three points (ui : vi), i = 1, 2, 3, at which R and S vanish.
Moreover, if k of these points are qual to the same point, we require that R and S vanish to order
at least k at this point (that is, (viu − uiv)k divides R and S). Then there is a constant α ∈ K
such that R = αS.

LEMMA 2.8. D(x, y, z) is a multiple of `1(x, y, z)m1(x, y, z).

LEMMA 2.9. `(P22) = `(P23) = `(P32) = 0

LEMMA 2.11. Let P1, P2 be points on an elliptic curve. Then (P1 + P2)− P2 = P1 and −(P1 +
P2) + P2 = −P1

THEOREM 2.13 (Pascal’s Theorem). Let ABCDEF be a hexagon inscribed in a conic section
(ellipse, parabola, or hyperbola), where A,B,C,D,E, F are distinct points in the affine plane. Let
X be the intersection of AB and DE, let Y be the intersection of BC and EF , and let Z be the
intersection of CD and FA. Then X,Y, Z are collinear (see Figure 2.4).

COROLLARY 2.15 (Pappus’s Theorem). Let ` and m be two distinct lines in the plane. Let
A,B,C be distinct points of ` and let A′, B′, C ′ be distinct points of m. Assume that none of these
points is the intersection of ` and m. Let X be the intersection of AB′ and A′B, let Y be the
intersection of B′C and BC ′, and let Z be the intersection of CA′ and C ′A. Then X,Y, Z are
collinear (see Figure 2.5).
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PROPOSITION 2.16. Let K be a field of characteristic not 2 and let

y2 = x3 + ax2 + bx+ c = (x− e1)(x− e2)(x− e3)

be an elliptic curve E over K with e1, e2, e3 ∈ K. Let

x1 = (e2 − e1)−1(x− e1), y1 = (e2 − e1)−3/2y, λ =
e3 − e1
e2 − e1

.

Then λ 6= 0, 1 and
y21 = x1(x1 − 1)(x1 − λ)

THEOREM 2.17. Let K be a field of characteristic not 2. Consider the equation

v2 = au4 + bu3 + cu2 + du+ q2

with a, b, c, d, q ∈ K. Let

x =
2q(v + q) + du

u2
, y =

4q2(v + q) + 2q(du+ cu2)− (d2u2/2q)

u3
.

Define

a1 = d/q, a2 = c− (d2/4q2), a3 = 2qb

a4 = −4q2a, a6 = a2a4. (1)

Then
y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6.

The inverse transformation is

u =
2q(x+ c)− (d2/2q)

y
, v = −q + u(ux− d)

2q
.

The point (u, v) = (0, q) corresponds to the point (x, y) = ∞ and (u, v) = (0,−q) corresponds to
(x, y) = (−a2, a1a2 − a3).

PROPOSITION 2.18. Let K be a field of characteristic not 2. Let c, d ∈ K with c, d 6= 0 and d
not a square in K. The curve

C : u2 + v2 = c2(1 + du2v2)

is isomorphic to the elliptic curve

E : y2 = (x− c4d− 1)(x2 − 4c4d)

via the change of variables

x =
−2c(w − c)

u2

y =
4c2(w − c) + 2c(c4d+ 1)u2

u3

where w = (c2du2 − 1)v. The point (0, c) is the identity for the group law on C and the addition
law is

(u1, v1) + (u2, v2) =

(
u1v2 + u2v1

c(1 + du1u2v1v2)
,

v1v2 − u1u2
c(1− du1u2v1v2)

)
for all points (ui, vi) ∈ C(K). The negative of a point is −(u, v) = (−u, v).
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THEOREM 2.19. Let y21 = x31 +A1x1 +B1 and y22 = x23 +A2x2 +B2 be two elliptic curves with
j-invariants j1 and j2, respectively. If j1 = j2, then there exists µ 6= 0 in K (= algebraic closure of
K) such that

A2 = µ4A1, B2 = µ6B1.

The transformation
x2 = µ2x1, y2 = µ3y1

takes one equation to the other.

LEMMA 2.20. Let E be defined over Fq. Then φq is an endomorphism on E of degree q, and φq
is not separable.

PROPOSITION 2.21. Let α 6= 0 be a separable endomorphism of an elliptic curve E. Then

deg α = #Ker(α),

where Ker(α) is the kernel of the homomorphism α : E(K)→ E(K).
If α 6= 0 is not separable, then

deg α > #Ker(α).

THEOREM 2.22. Let E be an elliptic curve defined over a field K. Let α 6= 0 be an endomor-
phism of E. Then α : E(K)→ E(K) is surjective.

LEMMA 2.24. Let E be the elliptic curve y2 = x3 +Ax+B. Fix a point (u, v) on E. Write

(x, y) + (u, v) = (f(x, y), g(x, y)),

where f(x, y) and g(x, y) are rational functions of x, y (the coefficients depend on (u, v)) and y is
regarded as a function of x satisfying dy/dx = (3x2 +A)/(2y). Then

d
dxf(x, y)

g(x, y)
=

1

y
.

LEMMA 2.26. Let α1, α2, α3 be nonzero endomorphisms of an elliptic curve E with α1+α2 = α3.
Write

αj(x, y) = (Rαj (x), ySαj (x)).

Suppose there are constants cα1 , cα2 such that

R′α1
(x)

Sα1(x)
= cα1 ,

R′α2
(x)

Sα2(x)
= cα2 .

Then
R′α3

(x)

Sα3(x)
= cα1 + cα2 .

PROPOSITION 2.28. Let E be an elliptic curve defined over a field K, and let n be a nonzero
integer. Suppose that multiplication by n on E is given by

n(x, y) = (Rn(x), ySn(x))
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for all (x, y) ∈ E(K), where Rn and Sn are rational functions. Then

R′n(x)

Sn(x)
= n.

Therefore, multiplication by n is separable if and only if n is not a multiple of the characteristic p
of the field.

PROPOSITION 2.29. Let E be an elliptic curve defined over Fq, where q is a power of the
prime p. Let r and s be integers, both not 0. The endomorphism rφq + s is separable if and only if
p - s.
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