Theorem statements from Chapter 2 of Washington

GROUP LAW. Let E be an elliptic curve defined by $y^{2}=x^{3}+A x+B$. Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ be points on E with $P_{1}, P_{2} \neq \infty$. Define $P_{1}+P_{2}=P_{3}=\left(x_{3}, y_{3}\right)$ as follows:

1. If $x_{1} \neq x_{2}$ then

$$
x_{3}=m^{2}-x_{1}-x_{2}, \quad y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}, \quad \text { where } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

2. If $x_{1}=x_{2}$ but $y_{1} \neq y_{2}$, the $P_{1}+P_{2}=\infty$.
3. If $P_{1}=P_{2}$ and $y_{1} \neq 0$, then

$$
x_{3}=m^{2}-2 x_{1}, \quad y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}, \quad \text { where } m=\frac{3 x_{1}^{2}+A}{2 y_{1}}
$$

4. If $P_{1}=P_{2}$ and $y_{1}=0$, then $P_{1}+P_{2}=\infty$.

Moreover, define

$$
P+\infty=P
$$

for all points P on E.
THEOREM 2.1. The addition of points on an elliptic curve E satisfies the following properties:

1. (commutativity) $P_{1}+P_{2}=P_{2}+P_{1}$ for all P_{1}, P_{2} on E.
2. (existence of identity) $P+\infty=P$ for all points P on E.
3. (existence of inverse) Given P on E, there exists P^{\prime} on E with $P+P^{\prime}=\infty$. This point P^{\prime} will usually be denoted $-P$.
4. (associativity) $\left(P_{1}+P_{2}\right)+P_{3}=P_{1}+\left(P_{2}+P_{3}\right)$ for all P_{1}, P_{2}, P_{3} on E.

In other words, the points on E form an additive abelian group with ∞ as the identity element.
INTEGER TIMES A POINT. Let k be a positive integer and let P be a points on an elliptic curve. The following procedure computes $k P$.

1. Start with $a=k, B=\infty, C=P$.
2. If a is even, let $a=a / 2$, and let $B=B, C=2 C$.
3. If a is odd, let $a=a-1$, and let $B=B+C, C=C$.
4. If $a \neq 0$, go to step 2.

5. Output B.

The output B is $k P$ (see Exercise 2.8).
LEMMA 2.2. Let $G(u, v)$ be a nonzero homogeneous polynomial and let $\left(u_{0}: v_{0}\right) \in \mathbf{P}_{k}^{1}$. Then there exists an integer $k \geq 0$ and a polynomial $H(u, v)$ with $H\left(u_{0}, v_{0}\right) \neq 0$ such that

$$
G(u, v)=\left(v_{0} u-u_{0} v\right)^{k} H(u, v) .
$$

LEMMA 2.3. Let L_{1} and L_{2} be lines intersecting in a point P, and, for $i=1,2$, let $L_{i}(x, y, z)$ be a linear polynomial defining L_{i}. Then $\operatorname{ord}_{L_{1}, P}\left(L_{2}\right)=1$ unless $L_{1}(x, y, z)=\alpha L_{2}(x, y, z)$ for some constant α, in which case $\operatorname{ord}_{L_{1}, P}\left(L_{2}\right)=\infty$.

DEFINITION 2.4. A curve C in \mathbf{P}_{K}^{2} defined by $F(x, y, z)=0$ is said to be nonsingular at a point P if at least one of partial derivatives F_{x}, F_{y}, F_{z} is nonzero at P.

LEMMA 2.5. Let $F(x, y, z)=0$ define a curve C. If P is a nonsingular point of C, then there is exactly one line in \mathbf{P}_{K}^{2} that intersects C to order at least 2, and it is the tangent to C at P.

THEOREM 2.6. Let $C(x, y, z)$ be a homogeneous cubic polynomial, and let C be the curve in \mathbf{P}_{K}^{2} described by $C(x, y, z)=0$. Let $\ell_{1}, \ell_{2}, \ell_{3}$ and m_{1}, m_{2}, m_{3} be lines in \mathbf{P}_{K}^{2} such that $\ell_{i} \neq m_{j}$ for all i, j. Let $P_{i j}$ be the point of intersection of ℓ_{i} and m_{j}. Suppose $P_{i j}$ is a nonsingular point on the curve C for all $(i, j) \neq(3,3)$. In addition, we require that if, for some i, there are $k \geq 2$ of the points $P_{i 1}, P_{i 2}, P_{i 3}$ equal to the same point, then ℓ_{i} intersects C to order at least k at this point. Also, if, for some j, there are $k \geq 2$ of the points $P_{1 j}, P_{2 j}, P_{3 j}$ equal to the same point, then m_{j} intersects C to order at least k at this point. Then P_{33} also lies on the curve C.

LEMMA 2.7. Let $R(u, v)$ and $S(u, v)$ be homogeneous polynomials of degree 3, with $S(u, v)$ not identically 0 , and suppose there are three points $\left(u_{i}: v_{i}\right), i=1,2,3$, at which R and S vanish. Moreover, if k of these points are qual to the same point, we require that R and S vanish to order at least k at this point (that is, $\left(v_{i} u-u_{i} v\right)^{k}$ divides R and S). Then there is a constant $\alpha \in K$ such that $R=\alpha S$.

LEMMA 2.8. $D(x, y, z)$ is a multiple of $\ell_{1}(x, y, z) m_{1}(x, y, z)$.
LEMMA 2.9. $\ell\left(P_{22}\right)=\ell\left(P_{23}\right)=\ell\left(P_{32}\right)=0$
LEMMA 2.11. Let P_{1}, P_{2} be points on an elliptic curve. Then $\left(P_{1}+P_{2}\right)-P_{2}=P_{1}$ and $-\left(P_{1}+\right.$ $\left.P_{2}\right)+P_{2}=-P_{1}$

THEOREM 2.13 (Pascal's Theorem). Let $A B C D E F$ be a hexagon inscribed in a conic section (ellipse, parabola, or hyperbola), where A, B, C, D, E, F are distinct points in the affine plane. Let X be the intersection of $\overline{A B}$ and $\overline{D E}$, let Y be the intersection of $\overline{B C}$ and $\overline{E F}$, and let Z be the intersection of $\overline{C D}$ and $\overline{F A}$. Then X, Y, Z are collinear (see Figure 2.4).

COROLLARY 2.15 (Pappus's Theorem). Let ℓ and m be two distinct lines in the plane. Let A, B, C be distinct points of ℓ and let $A^{\prime}, B^{\prime}, C^{\prime}$ be distinct points of m. Assume that none of these points is the intersection of ℓ and m. Let X be the intersection of $\overline{A B^{\prime}}$ and $\overline{A^{\prime} B}$, let Y be the intersection of $\overline{B^{\prime} C}$ and $\overline{B C^{\prime}}$, and let Z be the intersection of $\overline{C A^{\prime}}$ and $\overline{C^{\prime} A}$. Then X, Y, Z are collinear (see Figure 2.5).

PROPOSITION 2.16. Let K be a field of characteristic not 2 and let

$$
y^{2}=x^{3}+a x^{2}+b x+c=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)
$$

be an elliptic curve E over K with $e_{1}, e_{2}, e_{3} \in K$. Let

$$
x_{1}=\left(e_{2}-e_{1}\right)^{-1}\left(x-e_{1}\right), \quad y_{1}=\left(e_{2}-e_{1}\right)^{-3 / 2} y, \quad \lambda=\frac{e_{3}-e_{1}}{e_{2}-e_{1}} .
$$

Then $\lambda \neq 0,1$ and

$$
y_{1}^{2}=x_{1}\left(x_{1}-1\right)\left(x_{1}-\lambda\right)
$$

THEOREM 2.17. Let K be a field of characteristic not 2. Consider the equation

$$
v^{2}=a u^{4}+b u^{3}+c u^{2}+d u+q^{2}
$$

with $a, b, c, d, q \in K$. Let

$$
x=\frac{2 q(v+q)+d u}{u^{2}}, \quad y=\frac{4 q^{2}(v+q)+2 q\left(d u+c u^{2}\right)-\left(d^{2} u^{2} / 2 q\right)}{u^{3}} .
$$

Define

$$
a_{1}=d / q, \quad a_{2}=c-\left(d^{2} / 4 q^{2}\right), \quad a_{3}=2 q b
$$

$$
\begin{equation*}
a_{4}=-4 q^{2} a, \quad a_{6}=a_{2} a_{4} . \tag{1}
\end{equation*}
$$

Then

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} .
$$

The inverse transformation is

$$
u=\frac{2 q(x+c)-\left(d^{2} / 2 q\right)}{y}, \quad v=-q+\frac{u(u x-d)}{2 q} .
$$

The point $(u, v)=(0, q)$ corresponds to the point $(x, y)=\infty$ and $(u, v)=(0,-q)$ corresponds to $(x, y)=\left(-a_{2}, a_{1} a_{2}-a_{3}\right)$.

PROPOSITION 2.18. Let K be a field of characteristic not 2. Let $c, d \in K$ with $c, d \neq 0$ and d not a square in K. The curve

$$
C: u^{2}+v^{2}=c^{2}\left(1+d u^{2} v^{2}\right)
$$

is isomorphic to the elliptic curve

$$
E: y^{2}=\left(x-c^{4} d-1\right)\left(x^{2}-4 c^{4} d\right)
$$

via the change of variables

$$
\begin{gathered}
x=\frac{-2 c(w-c)}{u^{2}} \\
y=\frac{4 c^{2}(w-c)+2 c\left(c^{4} d+1\right) u^{2}}{u^{3}}
\end{gathered}
$$

where $w=\left(c^{2} d u^{2}-1\right) v$. The point $(0, c)$ is the identity for the group law on C and the addition law is

$$
\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)=\left(\frac{u_{1} v_{2}+u_{2} v_{1}}{c\left(1+d u_{1} u_{2} v_{1} v_{2}\right)}, \frac{v_{1} v_{2}-u_{1} u_{2}}{c\left(1-d u_{1} u_{2} v_{1} v_{2}\right)}\right)
$$

for all points $\left(u_{i}, v_{i}\right) \in C(K)$. The negative of a point is $-(u, v)=(-u, v)$.

THEOREM 2.19. Let $y_{1}^{2}=x_{1}^{3}+A_{1} x_{1}+B_{1}$ and $y_{2}^{2}=x_{3}^{2}+A_{2} x_{2}+B_{2}$ be two elliptic curves with j-invariants j_{1} and j_{2}, respectively. If $j_{1}=j_{2}$, then there exists $\mu \neq 0$ in \bar{K} ($=$ algebraic closure of K) such that

$$
A_{2}=\mu^{4} A_{1}, \quad B_{2}=\mu^{6} B_{1} .
$$

The transformation

$$
x_{2}=\mu^{2} x_{1}, \quad y_{2}=\mu^{3} y_{1}
$$

takes one equation to the other.
LEMMA 2.20. Let E be defined over \mathbf{F}_{q}. Then ϕ_{q} is an endomorphism on E of degree q, and ϕ_{q} is not separable.

PROPOSITION 2.21. Let $\alpha \neq 0$ be a separable endomorphism of an elliptic curve E. Then

$$
\operatorname{deg} \alpha=\# \operatorname{Ker}(\alpha),
$$

where $\operatorname{Ker}(\alpha)$ is the kernel of the homomorphism $\alpha: E(\bar{K}) \rightarrow E(\bar{K})$.
If $\alpha \neq 0$ is not separable, then

$$
\operatorname{deg} \alpha>\# \operatorname{Ker}(\alpha) .
$$

THEOREM 2.22. Let E be an elliptic curve defined over a field K. Let $\alpha \neq 0$ be an endomorphism of E. Then $\alpha: E(\bar{K}) \rightarrow E(\bar{K})$ is surjective.

LEMMA 2.24. Let E be the elliptic curve $y^{2}=x^{3}+A x+B$. Fix a point (u, v) on E. Write

$$
(x, y)+(u, v)=(f(x, y), g(x, y))
$$

where $f(x, y)$ and $g(x, y)$ are rational functions of x, y (the coefficients depend on (u, v)) and y is regarded as a function of x satisfying $d y / d x=\left(3 x^{2}+A\right) /(2 y)$. Then

$$
\frac{\frac{d}{d x} f(x, y)}{g(x, y)}=\frac{1}{y} .
$$

LEMMA 2.26. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be nonzero endomorphisms of an elliptic curve E with $\alpha_{1}+\alpha_{2}=\alpha_{3}$. Write

$$
\alpha_{j}(x, y)=\left(R_{\alpha_{j}}(x), y S_{\alpha_{j}}(x)\right) .
$$

Suppose there are constants $c_{\alpha_{1}}, c_{\alpha_{2}}$ such that

$$
\frac{R_{\alpha_{1}}^{\prime}(x)}{S_{\alpha_{1}}(x)}=c_{\alpha_{1}}, \quad \frac{R_{\alpha_{2}}^{\prime}(x)}{S_{\alpha_{2}}(x)}=c_{\alpha_{2}} .
$$

Then

$$
\frac{R_{\alpha_{3}}^{\prime}(x)}{S_{\alpha_{3}}(x)}=c_{\alpha_{1}}+c_{\alpha_{2}} .
$$

PROPOSITION 2.28. Let E be an elliptic curve defined over a field K, and let n be a nonzero integer. Suppose that multiplication by n on E is given by

$$
n(x, y)=\left(R_{n}(x), y S_{n}(x)\right)
$$

for all $(x, y) \in E(\bar{K})$, where R_{n} and S_{n} are rational functions. Then

$$
\frac{R_{n}^{\prime}(x)}{S_{n}(x)}=n .
$$

Therefore, multiplication by n is separable if and only if n is not a multiple of the characteristic p of the field.

PROPOSITION 2.29. Let E be an elliptic curve defined over \mathbf{F}_{q}, where q is a power of the prime p. Let r and s be integers, both not 0 . The endomorphism $r \phi_{q}+s$ is separable if and only if $p \nmid s$.

