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Basic definitions. A field is a commutative ring in which all nonzero elements are invertible.
We write the additive identity as 0 and the multiplicative identity as 1, and we assume that 0 6= 1.

If F is a field, we use F+ to denote the additive group of F , i.e., the set of all elements of F
with the addition operation. We use F× or F ∗ to denote the multiplicative group of F , i.e., the set
of all nonzero elements of F with the multiplication operation.

A finite field is a field with a finite number of elements; the number of elements is the order of
the field. For every prime p, the ring of integers modulo p is a finite field of order p and is denoted
Zp or Fp.
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Characteristic and cardinality. The characteristic of a field is the smallest positive integer k
such that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
k times

= 0.

If no such k exists then the field is said to have characteristic 0. The characteristic of any field is
either 0 or a prime p.2 Fields of characteristic 0 are necessarily infinite (and contain the rational
numbers Q); fields of prime characteristic may be finite or infinite.

If F is a finite field of characteristic p, then the order of F is a prime power q = pr for some
positive integer r, and we write F = Fpr or F = Fq. (We will see below how to construct finite
fields of non-prime order.) If F and F ′ are two fields of order q, then F and F ′ are isomorphic (i.e.,
there is a bijective ring homomorphism φ : F → F ′). Thus we can talk about the finite field Fq.

Polynomials. If F is any field, then F [x] denotes the ring of polynomials in the variable x with
coefficients in F , i.e., expressions of the form f(x) = adx

d+ad−1x
d−1+· · ·+a1x+a0 with the ai ∈ F .

The integer d is the degree of f . A polynomial f of degree d is monic if ad = 1. A polynomial
f(x) of degree d is irreducible if there is no way to write f(x) = g(x)h(x) with deg g < deg f and
deg h < deg f . Any polynomial f ∈ F [x] can be written uniquely as a product of a scalar a ∈ F
and monic irreducible polynomials f1, . . . , f` ∈ F [x]. (In this sense, irreducible polynomials play
the role in F [x] that prime numbers do in the integers.)

1Proof: it is clear that Fp is a commutative ring, so we just have to show that every nonzero element is invertible.
To see this, observe that if gcd(a, p) = 1 then there are x, y such that ax + by = 1, so x = a−1 in F∗

p.
2Proof: if F has characteristic mn > 0 for integers m and n, then mn = 0 in F , so one of m or n is not invertible

in F ∗, and thus either m = 0 or n = 0 as elements of F . If m,n > 1 this contradicts the minimality property of
characteristic.
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If f ∈ F [x] is a polynomial, a root of f is an element α ∈ F with f(α) = 0. Any polynomial
f ∈ F [x] of degree d has at most d roots in F . When F is finite, this property, combined with the
fundamental theorem of abelian groups, can be used to show the following:

Important fact. The multiplicative group of a finite field is cyclic.3

Extension fields. Let F be any field, and let f(x) ∈ F [x] be an irreducible polynomial of degree
d with coefficients in the field F . We can create the quotient ring K = F [x]/(f(x)), which is defined
to be the ring of all polynomials with coefficients in F subject to the relation f(x) = 0. Concretely,
the ring K can be represented as the set of all polynomials with degree less than d and coefficients
in F . Addition is carried out as usual for polynomials. When multiplying two polynomials, the
relation f(x) = 0 is used to reduce terms of degree d or greater.

As an additive group, K is isomorphic to the vector space F d. Since f(x) is irreducible, every
nonzero element of K is invertible,4 so K is a field. A field constructed in this way is called an
extension field of F . The degree of K is defined to be the degree d of F .

For example, if F = Q and f(x) = x2 + 1, then K = Q[x]/(x2 + 1) consists of all linear (i.e.,
degree 1) polynomials ax + b with a, b ∈ Q. We multiply two such polynomials ax + b, cx + d by
computing (ax + b)(cx + d) = acx2 + (ad + bc)x + bd and using the relation x2 = −1 to obtain
(ad + bc)x + (bc− ac), which is also a linear polynomial. In the field K the element x is a square
root of −1. To denote this property we write K = Q(

√
−1), which is read as “Q adjoin the square

root of −1.”
Back to our general setup. If F = Fp is the finite field of order p and f has degree d, then

K = Fp[x]/(f(x)) is a field of order pd. By our discussion above, there is a unique finite field of
order pd (up to isomorphism), so we can say that K is the field Fpd . However, this representation
is not unique; for example, the field F25 can be expressed as all of the following:

F25 = F5[x]/(x2 − 2) = F5(
√

2)

F25 = F5[y]/(y2 − 3) = F5(
√

3)

F25 = F5[z]/(z
2 + z + 1)

Isomorphisms between these fields are given by y = 2x and z = 3x+ 2.
Theoretically, the representation of a finite field makes no difference; however, when doing

computations choosing a good “defining polynomial” f(x) can make a huge difference in running
time, especially when using fields of large extension degree.

Field containment and algebraic closure. We can construct extensions as above where the
base field is any field Fq, not just a prime field Fp. For example, we have the “tower”

F7 ⊂ F49 = F7(
√

3) ⊂ F76 = F49(
3
√

2).

In general, we have Fpm ⊂ Fpn if and only if m divides n.

3Proof idea: if F ∗ has order n but is not cyclic, then there is some m < n such that am = 1 for all n values of
a ∈ F ∗, contradicting the fact that the polynomial xm − 1 has at most m roots in F .

4Proof: since f(x) is irreducible, every polynomial a(x) that is not a multiple of f(x) is relatively prime to f .
Thus there are polynomials g(x) and h(x) with ag + fh = 1, so g mod f is the inverse of a mod f .
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For a fixed q = pd, the union of the finite fields Fqr for all positive r is the algebraic closure of
Fq, and is denoted Fq. The field Fq has the property that any polynomial f ∈ Fq[x] has deg f roots
in Fq.

Frobenius. If F = Fq is a finite field of characteristic p, then for any x and y in F we have
(x + y)q = xq + yq (since the coefficients of all cross terms are divisible by p). It follows that the
map φ(x) = xq is a ring homomorphism from F to itself. The map φ is called the q-power Frobenius
map or q-power Frobenius automorphism.

Recall from above that the multiplicative group of Fq is cyclic of order q−1. Thus every nonzero
element of Fq satisfies xq−1 = 1. Multiplying by x to capture 0 as well, we see that every element
of Fq satisfies xq = x. Conversely, if xq = x then x is in Fq. Thus an element x ∈ Fq is in Fq if and
only if xq = x, i.e., x is fixed by the q-power Frobenius automorphism.

Finite fields in SAGE.

To construct a field of prime order p, use the command GF(p):5

sage: F = GF(7)

sage: F

Finite Field of size 7

Use parentheses to coerce an integer or rational number into a finite field. (Make sure that the
characteristic doesn’t divide the denominator!)

sage: GF(7)(3)^6

1

sage: GF(31)(22/7)

12

There are several ways to construct fields of non-prime order. The simplest is to use the GF

constructor directly:

sage: K.<a> = GF(25)

sage: K

Finite Field in a of size 5^2

Note that you must name the variable that you adjoin to the base field, but if you use this construc-
tion you have no control over the relation that the variable satisfies. You can use the charpoly

command to find the relation:

sage: a.charpoly()

x^2 + 4*x + 2

sage: a^2 + 4*a + 2

0

sage: K.random_element()

3*a + 1

5GF stands for “Galois field.”
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To specify the relation, use the modulus argument when calling GF. You first have to define a
polynomial ring that will contain the defining polynomial.

sage: R.<x> = GF(2)[] # polynomial ring in x over GF(2)

sage: K.<z> = GF(2^5, modulus=x^5+x^3+1) # finite field of size 32

sage: z^31

1

For more information, look at the help text for the GF() and F.extension() commands (where F

is a finite field).
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