
CS259C, Final Paper: Discrete Log, CDH, and DDH

Deyan Simeonov

12/10/11

1 Introduction and Motivation

In this paper we will present an overview of the relations between the Discrete Logarithm (DL), Computational
Diffie-Hellman (CDH) and Decision Diffie-Hellman (DDH) problems. It will be organized as follows. In section
one, by looking at some applications, we will provide some insight on why we might be interested in looking
at such relationships. In sections two and three we will make precise definitions and look at some immediate
consequences. Section four is devoted to self-reducibility and self-correctness. Section five looks at current results
in specific families of problem instances.

Loosely speaking, the DL problem asks, given a description of a group G (unless otherwise noted, all groups
will be abelian cyclic groups under addition and of prime order and by ’description’ we mean identity, an (efficient)
algorithm for performing subtraction and a generator g) and elements h1, h2 ∈ G to find the unique integer a ∈ Zp
s.t. h2 = ah1. Except in some trivial cases - for instance if G = Zp, where we can use simple division using
Bezout’s Lemma - this problem is believed to be hard (in fact, in generic groups it is known to require at least
Ω(
√
p) group operations). Using the hardness of DL as a motivation, one can come up with various simple security

protocols. A first example is the Diffie-Hellman key exchange: A1 and A2, both of which have the description of
a group G, want to share a secret. This is done by Ai picking a random ri ∈ Zp and sending Pi = rig to the
other party. Now Ai can compute riP1−i = r0r1g. Since an outside adversary sees g, r0g, r1g, it is reasonable to
try to show that given this information only, it is hard to deduce r0r1g. Another example is ElGamal encryption:
A wants to be able to receive encrypted messages, so he picks a G, a random s ∈ Zp and publishes (G, h = sg).
Now to send a message m ∈ G to A, B picks a random r ∈ Zp and outputs (c1, c2) = (rg, rh+m). A can clearly
compute m = c2 − sc1 and we want to believe that no one else can compute it (or, as a stronger assumption,
distinguish it from any random message).

Note that while DL is obviously sufficient to solve the above, it is not obvious at all (and mostly unknown)
whether it is necessary. For instance, in the DH key exchange (and similarly in ElGamal), it seems reasonable
to ask the question of whether one can find r0r1g without having to find r0, r1 first. This is called the CDH
assumption. Similarly, one could ask the (intuitively) stronger question of whether one can distinguish r0r1g from
a random element of the group G - which is a very reasonable thing to ask, since it implies indistinguishability of
an encryption of m and any other encryption. This gives rise to the DDH assumption. It is obvious that if one
can solve DL, then one can solve CDH and that if one can solve CDH then he can solve DDH. Thus, in the sense
that in order to (intuitively) reduce the space of possible ways for breaking a protocol we would want to have a
nice hierarchical structure of ’hard’ problems, it is tempting to try to prove (or disprove) the converses of these.

2 Definitions

This section is mainly based on [1] and [2]. Now let’s make precise the above problems and notion of ’hardness’.
Since we’ll be looking at solvers, it makes sense to define what does it mean to solve a problem.

Definition 2.1. Consider a family of problems ∪kFk and an instance generator B with security parameter k.
An algorithm A is said to solve a problem in Fk with noticeable probability if the probability that A returns the

1

3 TRIVIAL REDUCTIONS 2

correct answer is at least ε(k), where ε is s.t. ∃m ∈ Z : xm > 1/ε(x) for large x. The probability is taken over the
randomness in B and in A.

Definition 2.2. Consider a family of problems ∪kFk and an instance generator B with security parameter k. An
algorithm A is said to solve a problem in Fk with overwhelming probability if the probability that A returns the
correct answer is at least 1− ε(k), where ε is s.t. ∀m ∈ Z : xm < 1/ε(x) for large x. The probability is taken over
the randomness in B and in A.

Given this, we can define what it means for an algorithm to solve DL and CDH.

Definition 2.3. An algorithm A is said to solve the discrete logarithm problem (DL) in the group G with
noticeable (overwhelming) probability if, given elements h1, h2 ∈ G, A outputs a ∈ Zp s.t. h2 = ah1 with noticeable
(overwhelming) probability. Here the probability is taken over the randomness of the choice of h1, h2 ∈ G and the
randomness in A.

Definition 2.4. An algorithm A is said to solve the computational Diffie-Hellman problem (CDH) in the group
G with noticeable (overwhelming) probability if, given elements h0, h1 = a1h0, h2 = a2h0 ∈ G, A outputs h ∈ G
s.t. h = a1a2h0 with noticeable (overwhelming) probability. Here the probability is taken over the randomness of
the choice of h0, h1, h2 ∈ G (h0 6= 0) and the randomness in A.

For DDH we need to be a little bit more careful:

Definition 2.5. A pair of probability distributions P1,P2 over some space S is said to be computationally
indistinguishable if, for any efficient (randomized) algorithm A that has black-box access to these distributions we
have |P (A = true|P1)− P (A = true|P2)| is negligible.

In other words, no efficient algorithm can behave ’much’ differently under the two distributions. With this in
mind, we can define:

Definition 2.6. An algorithm A is said to solve the decision Diffie-Hellman problem (DDH) in the group G with
noticeable probability if A can distinguish {(h, a1h, a2h, a1a2h);h←R G, a1, a2 ←R Zp} and
{(h0, h1, h2, h3);h0, h1, h2, h3 ←R G}. Here both distributions are uniform within their support.

3 Trivial reductions

A natural question is to what extent does the exact definition of our probability space affect the performance of
our algorithms. More precisely, one might wonder what happens if we restrict the set of problem instances to
some (much smaller) set. For instance, one could define ’fixed’ versions of the above problems. The fixed-DL
problem asks, given h to output a, s.t. h = ag. The fixed-CDH and fixed-DDH problems just fix h = g. This,
of course, restricts the dimension of our input space. Clearly, one could use a solver for a non-fixed version to
solve a fixed version of the same problem (here we are talking about exact solutions; there is an issue with the
probabilistic analysis, which will be resolved by self-reducibility, shown in the next section). We can also ask the
reverse questions.

Lemma 3.1. Suppose we have an algorithm A that can solve fixed-DL, i.e. A(h) = a, s.t. h = ag. Can we
construct an algorithm B s.t. B(h1, h2) = b with h2 = bh1?

Proof. This is simple. Call A(h1) = a1, A(h2) = a2. Then we know that h1 = a1g, h2 = a2g ⇒ h2 = a2/a1h1, so
B can just output a2/a1. Computing inverses in Zp is easy (it is a finite cyclic group of known order), so we are
done.

A more careful analysis can also show the equivalence of CDH and fixed-CDH.

Lemma 3.2. Suppose we have an algorithm A that can solve fixed-CDH, i.e. on input h1 = a1g, h2 = a2g we
have A(h1, h2) = h, s.t. h = a1a2g. Can we construct an algorithm B s.t. on input h0, h1 = a1h0, h2 = a2h0 we
have B(h0, h1, h2) = a1a2h0?

4 SELF-REDUCIBILITY AND SELF-CORRECTNESS 3

Proof. This is proved in [1] in a very detailed way. We will sketch the proof from there. Suppose we can solve
the square-CDH problem, which given h, ah outputs a2h for h ∈ G, a ∈ Zp. Then we can compute h′1 = a2

1h0,
h′2 = a2

2h0 and hs = (a1 + a2)2h0. Then our answer is 1
2 (hs − h′1 − h′2). So we are left with the square-DH

problem. Clearly, we can use our oracle A to solve the fixed-inverse-DH problem, which given ag outputs a−1g
for any a ∈ Zp (just remember that a−1 = ap−2 and simulate the standard exponentiation algorithm using the
oracle). But this means that, if h0 = a0g, we can compute ha = 1

a0a1+a0
g and hb = 1

a0a1−a0
g (just call the

fixed-inverse-DH on h1 + h0 and h1 − h0). But then hb − ha = 2
a0(a2

1−1)
g, from which we can get hf = a0(a

2
1−1)
2 g.

Now our answer is just 2hf + h0, which solves the square-CDH problem for h0, h1. Since h0 and h1 are arbitrary,
we are done. Combining the above, we get that there exists an efficient algorithm for CDH that uses an algorithm
for fixed-CDH as a primitive. It is not hard to see that the number of oracle calls is O(log p), and the number of
group operations is constant.

Even though it is tempting to believe a similar thing for DDH, this has not yet been resolved (see [3]).
We can think of these types of results as things that smoothen the success probability of our algorithms given

a particular running time. For instance, in the above we have seen that for DL and CDH, the fixed versions are
(roughly) not easier than the non-fixed versions. Naturally we want to address the other direction as well - namely,
is it the case that any specific problem instance is not much harder than an average problem instance.

4 Self-reducibility and self-correctness

Now, following [2], we make the notion of self-reducibility precise:

Definition 4.1. Let P be a computational problem which takes some input x ∈ S, where S is the space of inputs.
Then P is random self-reducible if there is a polynomial-time algorithm that transforms an instance of P with
input x to an instance with input r ←R S s.t. the answer to the original instance can be derived in polynomial
time from the answer of our newly generated instance.

A simple example of the above is showing that DL is random self-reducible. Suppose we have some instance
(h0, h1 = ah0). Then the reduction would be just picking r0, r1 ←R Zp (in reality we would have r0 6= 0, but this
is a technicality) and generating (h′0 = r0h0, h

′
1 = r0r1h1). Trivially, if a′ is the answer to the second problem,

we have a′ = r1a. Also, since r0 and r1 are chosen uniformly at random, now h′0 and h′1 are uniformly random
element of G, so we have ended up with a random instance of DL.

Similarly one can, given an instance (h, ah, bh) of CDH, define the instance (r0h, (a + r1)r0h, (b + r2)r0h) for
random r0, r1, r2 ∈ Zp, which is now a uniformly random instance and whose answer can be used to find the answer
to the original instance. The same holds for DDH, although the construction (and proof that the distribution
becomes what we want it to be) is a bit more tedious ([1], [3]): we map (h, ah, bh, ch) to (r0h, (a+ r1)r0h, (br2 +
r3)r0h, (cr2 + ar3 + br1r2 + r1r3)r0h) (note that we can indeed compute this without knowing a, b, c).

Now, armed with the power of reducing our problem instance to random problem instances, we can turn to
the question of whether an algorithm with noticeable success probability implies one with overwhelming success
probability - in other words, does there exist a self-corrector for that problem. Note that if we have an efficient
way to check correctness of our answer, then this is obvious. For instance, given an algorithm A for DL that
succeeds with probability ε, we can define an algorithm B that at most k times calls A on a random self-reduction
of its input and breaks if at any point it has the correct answer (correctness we can check just by using our group
operation). This makes the success probability of B equal to 1 − (1 − ε)k. Setting e.g. k = c/ε this becomes
1 − 1/ec. For the other two, however, the proof for similar results is not that obvious. We’ll start with CDH
(based on [1]).

Theorem 4.1. Suppose we have an algorithm A that solves CDH in G (|G| = p) with probability at least ε >
1/log(p). Then for ε′ > 1/p can construct an algorithm B that solves CDH in G with probability at least 1− ε′ −
log(2r)2/(rε2) and makes at most 2log(2/ε′)/ε queries to A.

5 SOLUTION METHODS 4

Proof. Our strategy will be to use the random self-reduction and generate a list of instances that we will pass
to A. The problem then remains how to distinguish the correct answers from the incorrect ones. The trick to
address this issue is to generate a second instance of our problem such that the correct answers to both instances
are related in some way we can check and that any incorrect answers will with high probability not obey the same
relation. Thus, then we would just use the self-reduction to generate two lists of instances (one based on the
original problem and one on our modified) that we pass to A and then check the validity of the relation for all
pairs of answers.

More specifically, let the input to our problem be (h0, h1 = ah0, h2 = bh0). Generate n instances of our problem
using the self-reduction and call A on each of them. Call the list of answers L = (Z1, Z2, ..., Zn). Note that since
A has success probability ε, the probability that L contains no copy of the right answer is at most (1− ε)n. Now
define the triple (h0, xh0 + yh1, h2) where x, y ←R Zp, generate n instances of the new problem similarly as above
and call the list of answers L′ = (Z ′1, Z

′
2, ..., Z

′
n). Again, the probability that L′ contains no copy of the right

answer is at most (1−ε)n. Note that the correct answer to this new instance is (x+ay)bh0 = xh2 +y(abh0). Thus,
by looping through all i, j ∈ {1, ..., n} and checking whether yZi + xh2 = Z ′j we can detect the correct answer Zi.
Now, we already know that with probability 1 − 2(1 − ε)n there is at least one of all the n2 pairs (namely, the
’correct’ pair) satisfies the above relation, so it just remains to bound the probability of having a pair of incorrect
(Zi, Z ′j) s.t. yZi + xh2 = Z ′j ⇒ y(Zi − abh0) = Z ′j − (ay + x)bh0. Note that if any one of Zi, Z ′j is correct, this
forces the other one to be correct (since then one of the sides becomes zero), so we can assume that both Zi and
Z ′j are incorrect. But this means that Zi − abh0 and Z ′j − (ay + x)bh0 are non-zero, so for a fixed ay + x there
is exactly one y such that the above relation holds. Since (x, y) ←R Z2

p is equivalent to (ay + x, y) ←R Z2
p, this

means that the probability for an incorrect pair to obey the relation is 1/p. Thus, the probability over all incorrect
pairs that any one of them obeys the relation is at most n2/p. Combining all of the above, we have constructed
an algorithm that works with probability 1 − 2(1 − ε)n − n2/p. The exact bounds in the theorem statement we
get by defining n = log(2/ε′)/ε.

For the sake of completeness, let’s also look at a self-corrector for DDH ([3]).

Theorem 4.2. Suppose we have an algorithm A that solves DDH in G (|G| = p) with noticeable probability. Then
we can construct an algorithm B that uses A as an oracle and solves DDH with overwhelming probability.

Proof. Even though this may sound involved, it’s actually quite natural, since we already know |P (A(x) =
true|x ←R DDH) − P (A = true|x ←R G4)| > ε. For brevity, let P (A(x) = true|x ←R DDH) = p + a >
p = P (A = true|x ←R G4) (we can always swap the output of A to ensure this property holds); then a > ε.
Now it is reasonable to believe that the way we would boost the probability of B is by calling A many times
and using the fact that the average of n Bernoulli variables with probability p converges in probability to p.
Namely, call A n times on self-reductions of input x. Let X be the random variable denoting the fraction of
times we have ’true’ in the list of outputs. Then generate a random y ∈ G4, call A n times on self-reductions
of y and similarly let Y be the random variable denoting the fraction of times we have ’true’ in the list of
outputs. Using Hoeffding’s inequality, we get that P (|Y − p| > t) < 2e−2t2n. If x is a DDH tuple, we have
P (|X − p − a| > t) < 2e−2t2n, otherwise we have P (|X − p| > t) < 2e−2t2n. Combining these, we get that if x
is a DDH tuple, we have P (X − Y < a − 2t) < P (Y − p > t) + P (X − p − a < −t) < 2e−2t2n and otherwise
P (X−Y > 2t) < P (Y −p < −t)+P (X−p > t) < 2e−2t2n. Thus, if we make B return ’true’ iff |X−Y | > a/2 then
P (B = true|x←R G4) < 2e−a

2n/2 and P (B = false|x←R DDH) < 2e−a
2n/2. The number of calls to the oracle

is 2n. Our failure probability decreases exponentially as n increases; in particular we can get an overwhelming
probability by picking n = pα for any α > 0.

5 Solution methods

Now, having a better grasp on the average case-worst case complexities of the problems, we can with more
confidence look at some solution methods. The first obvious question is whether there is an algorithm that is
independent of the structure of the group. Precisely, under Shoup’s model for generic algorithms ([1]):

5 SOLUTION METHODS 5

Definition 5.1. Suppose we have some injection σ from a group G to some large set S. Then a generic algo-
rithm A takes as input a tuple (σ(g1), ..., σ(gn)) and outputs a tuple (r1, ..., rm, σ(h1), ..., σ(hk)) with r1, ..., rm ∈
Zp, g1, ..., gn, h1, ..., hk ∈ G. In addition, A has access for an oracle for the group operation: given σ(x), σ(y) the
oracle returns σ(x− y).

Unfortunately, it can be shown (e.g. see [1]) that for both DL and CDH the success probability using m queries
to the oracle is at most O(m2/p), which means that in order to get a good success probability we must do at least
Ω(
√
p) queries, which is usually too big. In addition, the baby-step-giant-step method or the Pollard-rho method

for computing discrete logarithms have expected running time O(
√
p).

Our goal now is to show that hardness of DL implies hardness of CDH, so we will try given an oracle for CDH
to solve DL. From now on, we will assume that we are working in a group of prime order (if we are in a cyclic
group of non-prime order, then we can mostly lift our group to a prime-order subgroup, perform the algorithms
there and then use the Chinese Remainder Theorem to get the result; this is the Pohlig-Hellman method, details
are in []).

The main idea is that we can set things up so that by performing group operations and oracle queries on
elements of G, we can implicitly perform operations in a different group, which we can control better. For
instance, if g1 = a1g, g2 = a2g, we can compute (a1 − a2)g using the group operation and (a1a2)g using an oracle
query. Extending this we can compute r(a)g for any rational function of a ∈ Zp, so we are implicitly performing
operations in Fp. With this in mind, let’s look at the den Boer reduction ([4], [1]):

Theorem 5.1. Suppose l is the largest prime factor of p − 1 and let A be an oracle for CDH in G. Then one
can solve the DL in G with O(log(p)log(log(p))) oracle queries, O(log(p)(

√
l + lop(p))) multiplications in Fp and

O(
√
llog2(p)) group operations in G.

Proof. Suppose we have the DLP with input (h, h′ = ah) in G. Let p− 1 =
k∏
i=1

lβii be the factorization of p− 1.

We can find a primitive root mod p in time O(log(p)log(log(p))), using the method described in [2]: basically the
idea is to generate elements x from Z∗p uniformly at random, lift x to the subgroups with maximal prime-power

order (i.e. xi = x(p−1)/l
βi
i), check if xi generates this subgroup (i.e. if xl

βi−1
i
i 6= 1) and multiply our current result

by xi if the answer is ’yes’. That way at each step we potentially make our result include a generator of another
subgroup with order lβii . Since randomness of x in G implies randomness of xi in the subgroup of order lβii , we get
that for each x, and each i, the probability that we make our result include a generator of the subgroup of order
lβii is φ(lβii)/lβii = (li−1)/li > 1/2, so the expected number of x we have to choose is constant. Each set of xi’s can
be computed with O(log(k)log(p)) = O(log(p)log(log(p))) group operations using a standard divide-and-conquer
approach ([2]), so our running time for now is O(log(p)log(log(p))).

Now that we have α - a primitive root mod p, we know that for some unique c ∈ Zp−1 we have a = αc. Our

goal will be to find c. We will use the Pohlig-Hellman method. Suppose c =
βi∑
j=0

rj l
j
i , where 0 ≤ rj ≤ li − 1 for

j 6= βi. We will show how to compute r0, the computation for the rest is essentially the same. We use our oracle
to compute a(p−1)/lig = αc(p−1)/lig = αr0(p−1)/lig and use group operations to compute α(p−1)/lig. Now in order
to find r0 we can just use BSGS: for w =

√
li compute α(p−1)/lijwg for all 0 ≤ j ≤ w and α(r0−j′)(p−1)/lig for all

0 ≤ j′ ≤ w and intersect the lists. Computing the lists requires O(wlog(p)) group operations and O(w + log(p))
operations in Z∗p. Having found r0, we can continue in a similar fashion to find the other rj ’s. Now we can easily
compute c mod lαii for all i and do a CRT followed by a = αc to get the final result.

As for the running time, summing over all primes we get that all BSGS steps together take O(
k∑
i=0

βi
√
lilog(p))

group operations which is bounded by O(
√
llog2(p)) and O(

k∑
i=0

βi(
√
li+ log(p))) operations in Fp which is bounded

by O(
√
llog(p) + log2(p)). We also need all elements of the form a(p−1)/ltig for 0 ≤ 1 ≤ βi, which we can get in

O(log(p)log(log(p))) oracle queries and all elements of the form α(p−1)/lti which we get in O(log(p)log(log(p))) op-
erations in Fp. Computing a from the r′js can be done with O(log(p)) operations in Fp. Summing the complexities

REFERENCES 6

of all steps we get the desired bounds.

The above algorithm’s trick is to translate the problem instance into one that lies in Z∗p and make use of the
smoothness (i.e. the largest prime factor) of p − 1 to improve its running time. A natural question is whether
there are other groups to which we can translate the problem to, preferably some that will give us algorithms that
do not rely on such strict assumptions about p. Maurer [5] suggested the use of the group of points on an elliptic
curve E: y2 = x3 +Ax+B over Fp. The reduction, which we will briefly sketch below, is essentially the same as
den Boer’s with some minor differences related to the specifics of the group.

Suppose we have an elliptic curve E y2 = x3 + Ax + B over Fp of smooth order. Let the input for our DL
problem be h, h′ = ah. Pick a random integer r ∈ Zp and let a′ = a+ r. Then with high (roughly 1/2) probability
it is true that a′3 +Aa′ +B is a quadratic residue mod p, which means that there is some b s.t. Q = (a′, b) is a
point on the elliptic curve. We can find bg by using a standard square-root method in Zp and using the oracle for
CDH to do multiplications in Z∗p. Let P = (c, d) be a generator of the elliptic curve group. Then clearly if we can
find k s.t. Q = [k]P we will find a′ and thus a. The problem, however, is that we don’t know Q explicitly, we just
know (a′g, bg) - we will call this the implicit representation of (a′, b). But note that, as long as we can perform the
group operation on E just based on the implicit representations, we will be in the exact same situation as in the
den Boer reduction - before the only thing we were using is the fact that we can multiply implicit representations
in Z∗p. But, remembering that the elliptic curve group operation is a rational function of the points’ coordinates
and that using the CDH oracle we can evaluate arbitrary rational functions implicitly, we get that indeed we can
perform the group operation on E using only implicit representations. The running time is similar as in the den
Boer case, with the difference that we have an additional

√
l factor in the number of oracle queries caused by the

fact that this time we need to use the oracle every time when we are dealing with implicit representations (in
particular, we cannot avoid calling the oracle during BSGS). A careful analysis of the running time is given in
[1].

This time, the performance relies on the smoothness of |E(Fp)|. Basically, the reduction shows that given an
elliptic curve of smooth order and a CDH oracle, one can solve DL efficiently. It is believed that the Hasse interval
contains at least one integer that is log(p)O(1)-smooth, so indeed if one is given this particular curve he can solve
DL efficiently. However, the existence of such an integer does not give us much insight on what happens if we
don’t know a curve with that particular order, so in order to exploit this we might want to be able to generate such
curves. One approach is to try random curves, therefore requiring estimates on the fraction of smooth numbers
in the Hasse interval [p − 2

√
p, p + 2

√
p]. It is conjectured that Hasse intervals contain at least 4

√
p/Lr(1/2, c)

integers that are nc-smooth. If that is the case one can (by randomly picking a curve) and then using the Maurer
reduction get a Lr(1/2, c) reduction from CDH to DL.

References

[1] Steven Galbraith, The Diffie-Hellman Problem.
http://math.auckland.ac.nz/ sgal018/crypto-book/ch22.pdf

[2] Steven Galbraith, Basic Algorithmic Number Theory.
http://math.auckland.ac.nz/ sgal018/crypto-book/ch3.pdf

[3] Dan Boneh, The Decision Diffie-Hellman Problem.
http://crypto.stanford.edu/ dabo/pubs/papers/DDH.pdf

[4] Bert den Boer, Diffie-Hellman is as Strong as Discrete Log for Certain Primes.
Crypto 1988

[5] Ueli M. Maurer, Towards the Equivalence of Breaking the Diffie-Hellman Protocol and Computing Discrete
Logarithms.
Crypto 1994

