
Provable Security Properties in Generic Groups

David Philipson

1 Introduction

One of the main motivations for moving to elliptic curve groups in cryptography is to avoid the
computational properties of simpler groups such as F×p , which are open to a range of attacks due
to their well-understood relation to the integers. Take, for instance, the discrete log problem on a
group of p elements, whose difficulty is the basis for a number of cryptographic applications, such
as ElGamal. While we can solve this problem in F×p in subexponential time using the index calculus,
if we attempt to solve the smae problem without relying on specific computational properties of
F×p , we must instead use an algorithm such as Pollard-rho, which has an exponential running
time of Ω(

√
p). In this report, I review the work of Shoup and the work of Boneh and Boyen,

which examines the limitations of such “generic algorithms.” In particular, Shoup demonstrates
that we cannot hope to perform asymptotically better than our known algorithms for solving the
discrete log or Diffie-Hellman problems using generic algorithms. Boneh and Boyen then allow
the algorithms to make use of pairings, and demonstrate that they still have limitations which are
useful for cryptography.

2 Definitions and preliminaries

The definitions in this section are taken from Shoup’s paper, “Lower Bounds for Discrete Logarithms
and Related Problems.”

We can consider a generic algorithm to be an algorithm which answers questions about a cyclic
group Z/n, but rather than interacting directly with the group, it only interacts with encodings of
the group elements through some unknown encoding function. At any time, the algorithm may
make queries to a “group operation oracle” which will perform a group operation and respond
with the encoding of the result. Hence, the algorithm is unable to make use of any computations in
the group other than those based on the group law. Formally, generic algorithms are defined as
follows:

Definition. A generic algorithm A for Zn on S is a probabilistic algorithm that behaves as follows:
it takes as input an encoding list (σ(x1), . . . , σ(xk)), where each xi is in Zn, and σ is an encoding
function of Z/n on S. As the algorithm executes, it may from time to time consult an oracle,
specifying two indices i and j into the encoding list, and a sign bit. The oracle computes σ(xi ± xj),
according to the specified sign bit, and this bit string is appended to the encoding list (to which A
always has access). The output of A is a bit string denoted A(σ; x1, . . . , xk).

We will be interested in the performance of generic algorithms on the discrete log problem and
both the computational and decision Diffie-Hellman problems, which we now define.

Definition. Let G be a cyclic group with n elements, which we write multiplicatively (as we will
all groups throughout this paper other than the groups Z/n, which we write additively). Let g be a
generator of G and let k ∈ [0, n). Given (g, gx), the discrete log problem (DLP) is to compute x.

Definition. Let G be a cyclic group with n elements. Let g be a generator of G and let x, y ∈ [0, n).
Given (g, gx, gy), the computational Diffie-Hellman problem (CDH) is to compute gxy.

1

Definition. Let G, n, g, x, y be as in the previous definition, and let r R←− [0, n) and then z R←− {xy, r}.
Given (g, gx, gy, gz), the decision Diffie-Hellman problem (DDH) is to determine whether z = xy
or r.

3 Fully generic algorithms

In his paper “Lower Bounds for Discrete Logarithms and Related Problems,” Shoup demonstrates
a series of results relating to the limitations of generic algorithms on the problems given above. His
major result on the discrete log problem is the following.

Theorem. Let n be a positive integer whose largest prime divisor is p. Let S ⊆ 0, 1∗ be a set of cardinality
at least n. Let A be a generic algorithm for Z/n on S that makes at most m oracle queries. If x ∈ Z/n and
an encoding function σ are chosen at random, then the probability that A(σ; 1, x) = x is O(m2/p).

Note that A(σ; 1, x) = x is equivalent to stating that the algorithm has solved the discrete log
problem, since the algorithm was given the encodings of the elements 1 and x and was able to
determine that the second element is the first one combined with itself x times. Further, suppose
we desire some constant lower bound c on our algorithm’s accuracy O(m2/p). Solving for the
the number of required oracle queries m tells us that we need at least Ω(

√
p) queries, matching

the number used by Pollard-rho, for instance. Finally, note that the fact that this theorem holds
over random encodings σ implies that there is in particular at least one encoding for which the
probability of success is at most O(m2/p). Since we only need one “bad” encoding to demonstrate
the weakness of the generic algorithm, this theorem implies the result discussed above: that generic
algorithms cannot solve the discrete log problem in faster than Ω(

√
p) time.

To prove the theorem, we first need a lemma.

Lemma. Let p be prime and let t ≥ 1. Let F(X1, . . . , Xk) ∈ (Z/pt)[X1, . . . , Xk] be a nonzero polynomial
of degree d. Then for random x1, . . . , xk ∈ Z/pt, the probability that F(x1, . . . , xk) = 0 is at most d/p.

Proof of lemma. For t = 1, assume without loss of generality that there is only one variable x (if
there are more, first choose random x2, . . . , xk, producing a polynomial in one variable). Since
this is a degree at most d polynomial in Fp, it has at most d distinct roots, hence there there is at
most a d/p chance that a randomly selected x produces F(x) = 0. For t > 1, first divide out the
equation F = 0 by the highest possible power of P, and thus the image of F in Z/p is nonzero.
Since x1, . . . , xk are selected from Z/pt according to a uniform distribution, so too are their images
in Z/p, and so we can use the result from when t = 1.

Proof of theorem. Write n = pts where p is prime and p - s. Rather than providing a real oracle
for the algorithm, we allow it to interact with a simulated oracle which effectively makes up an
encoding as it goes along and waits until the end before choosing x. The simulated oracle follows
the following rules:

• The simulated oracle stores a list F1, . . . , Fk of polynomials in Z/pt[X], a list z1, . . . , zk of
values in Z/s, and a list σ1, . . . , σk of values in S. This final list is the values it has given to the
adversary.

• To initialize, we take k = 2. The first list has elements 1, X. The second list has elements 1, z
where z R←− Z/s. The third list has σ1, σ2, where both σ1, σ2

R←− S, subject to σ1 6= σ2.

• When the adversary makes a query with indices i and j, we append values to the three lists
as follows:

2

– Fk+1 = Fi ± Fj.

– zk+1 = zi ± zj.

– If the pair Fk+1, zk+1 has already appeared at an earlier index l (that is, there exists l ≤ k

with Fk+1 = Fl and zk+1 = zl , then σk+1 = σl . Otherwise, select σk+1
R←− S.

• Suppose the adversary algorithm outputs y ∈ Z/n upon termination, and let y′ be the image
of y in Z/pt. Select a random x ∈ Z/pt. We say that the adversary has won if x = y′, or if
Fi(x) = Fj(x) for any Fi 6= Fj.

We first find an upper bound on the probability that the adversary wins. Note that for any fixed
i, j with Fi 6= Fj, if we set F = Fi − Fj then we have that F 6= 0. Since the degree of F is at most 1
(since all Fi are linear combinations of 1 and X), we have by the lemma that the probability that
F(x) = 0 is at most 1/p. Since there are O(m2) such pairs i, j and further the probability that x = y′

is at most 1/p, we have that the probability of the adversary winning is indeed O(m2/p).
Now, observe that as long as the adversary does not win the game, then the output of the

simulated oracle is indistinguishable from that of a real oracle with random x and encoding
function, in a scenario in which the adversary does not output a correct answer. This occurs by
construction, since the first case in which the adversary wins correponds to a correct response to
the discrete log problem, while the remaining cases correspond to situations where the simulated
oracle has incorrectly presented two equal group elements as nonequal. On the other hand, as
long as the adversary did not win, the lists used by the simulated oracle ensure that all outputs are
consistent with those under some selection of x and some encoding, both of which are uniform
over their respective spaces. Hence, the probability that the algorithm outputs the correct answer is
no greater than the probability that the algorithm wins the game, completing the proof.

Shoup also produces a similar bound for both the computational and decision Diffie-Hellman
problems. The results and their proofs are as follows.

Theorem. Let n be a positive integer whose largest prime divisor is p. Let S ⊆ {0, 1}∗ be a set of cardinality
at least n. Let A be a generic algorithm for Z/n on S that makes at most m oracle queries. If x, y ∈ Z/n and
an encoding function σ are chosen at random, then the probability that A(σ; 1, x, y) = σ(xy) is O(m2/p).

Proof. The proof is very similar to that of the previous theorem. Begin with the same set-up as the
previous proof, and make the following changes to the simulated oracle:

• The polynomials in the first list now are in two variables, X and Y.

• The lists begin with three elements each. The first list begins with elements 1, X, Y. The

second list begins with 1, zx, zy, where zx, zy
R←− Z/s. The third list begins with σ1, σ2, σ3,

where σ1, σ2, σ3
R←− S.

• When the algorithm terminates, we pick x, y R←− Z/pt. We say that the adversary has won if
Fi(x, y) = Fj(x, y) for some Fi 6= Fj or if Fi(x, y) = xy for some i.

As before, by the lemma the probability that Fi(x, y) = Fj(x, y) for fixed i, j is at most 1/p. Also by
the lemma, the probability that Fi − XY vanishes at (x, y) is at most 2/p. Hence, the probability
that the adversary wins is again O(m2/p).

We may assume that the adversary’s output is one of the “encodings” from the oracle, since
otherwise its response is no better than a random guess, and hence has probability of success

3

bounded by 1/(p−m). Supposing that the adversary does indeed output one of the encodings it
has received, we have as in the previous proof that in all cases where the adversary does not win
the game, the simulated oracle’s output is indistinguishable from that of a true oracle, in a case
where the algorithm’s output was incorrect. Again, we have that the probability of a correct answer
is therefore no greater than the probability of winning the game, hence O(m2/p).

Theorem. Let n be a positive integer whose smallest prime divisor is p. Let S ⊆ {0, 1}∗ be a set of
cardinality at least n. Let A be a generic algorithm for Z/n on S that makes at most m oracle queries. Let
x, y, z ∈ Z/n be chosen at random, let σ be a random encoding function, and let b be a random bit. Also, let
w0 = xy and w1 = z. Then the probability that A(σ; 1, x, y, wb, w1−b) = b is 1/2 + O(m2/p).

Proof sketch. The proof is once again quite similar, so we give only an outline. We modify the
simulated oracle once again. This time, our polynomials will be in four variables, X, Y, U, V.
Upon the adversary’s final response, we select random x, y, z, and say that the adversary wins
if Fi(x, y, z, xy) = Fj(x, y, z, xy) or Fi(x, y, xy, z) = Fj(x, y, xy, z) for some Fi 6= Fj. We can show
by a similar argument to the above that the probability the adversary wins is O(m2/p), and
the probability that the algorithm determines b is bounded by 1/2 plus the probability that the
algorithm wins this game.

It is worth noting that in the case of some elliptic curve groups (with small embedding degree),
we can actually break DDH using the non-generic property of easily computable Weil or Tate
pairings. In particular, given (P, [a]P, [b]P, [c]P) where c is either ab or random and P ∈ E[n], we
can compute pairings e([a]P, [b]P) = e(P, P)ab and e(P, [c]P) = e(P, P)c. If these two results are the
same, then we may output that c = ab. The fact that elliptic curve groups admit pairing-based
attacks suggests that we might find it more suitable to examine the capabilities of generic groups
which also have computable pairings. This is the subject of Boneh and Boyen’s paper, and the
following sections.

4 Generic groups with pairings and the Strong Diffie-Hellman assump-
tion

In their paper “Short Signatures Without Random Oracles and the SDH Assumption in Bilinear
Groups,” authors Boneh and Boyen present several signature schemes which are based on groups
with pairings and rely on a specific security assumption, which they name the Strong Diffie-
Hellman assumption (SDH). These signature methods rely on groups in which it is both easy to
solve the DDH problem, as discussed at the end of the previous section, and yet hard to solve
the Strong Diffie-Hellman problem. In order to argue that their schemes are secure, Boneh and
Boyen prove that using an expanded definition of generic algorithms, which are allowed to make
use of a pairing as well as the group operation, the SDH assumption holds. We will continue our
examination of generic algorithms by tracing this result.

First, we need some definitions, which are taken from Boneh and Boyen’s “Short Signatures
without Random Oracles and the SDH Assumption.”

Definition. If G1,G2,GT are cyclic groups of prime order p, then e : G1 ×G2 → GT is a bilinear
pairing if it satisfies:

• bilinearity – for all u ∈ G1 and v ∈ G2 and for all a, b ∈ Z, e(ua, vb) = e(u, v)ab, and

• non-degeneracy – if g1, g2 are respectively generators of G1 and G2, then e(g1, g2) 6= 1 and is
thus a generator of GT.

4

Definition. We say that (G1,G2) are a bilinear group pair if there exists a group GT and a bilinear
pairing e : G1×G2 → GT with |G1| = |G2| = |GT| = p, and the pairing e and the group operations
in G1,G2,GT are all efficiently computable.

These defintions allow the possibility of distinct G1,G2 in order to be general, although the
simpler case G1 = G2 is entirely possible, as in the case of the Weil pairing on supersingular curves.

Definition. Let G1,G2 be two cyclic groups of prime order p, generated respectively by g1, g2.
In the bilinear group pair (G1,G2), the q-Strong Diffie-Hellman problem (q-SDH) is as follows:
given as input a (q + 3)-tuple of elements

(g1, gx
1 , g(x2)

1 , . . . , g(xq)
1 , g2, gx

2) ∈ Gq+1
1 ×G2

2,

produce as output a pair (c, g1/(x+c)
1) ∈ Zp ×G1 for a freely chosen value c ∈ Zp \ {−x}.

Note that in the case G1 = G2, the last two elements of the input to the SDH problem are
redundant and can be omitted.

The SDH problem is useful for signature schemes due to the property that it has random self-
reduction. That is, given one instance of the SDH problem, we may produce a random additional
SDH problem instance where the solution to the second allows us to solve the first. Boneh and
Boyen use this property as the basis for several signature schemes, but such applications are not
the focus of this paper.

We must also update our definition of a generic algorithm to allow it to operate on bilinear
group pairs. As before, we may conceptualize such an algorithm as one which interacts with the
underlying groups only through the outputs an arbitrary and unknown encoding, while making
queries to an oracle to perform the underlying group and pairing operations. We adjust the previous
definition to work on a bilinear group pair (G1,G2) with respective generators g1, g2 and pairing
e : G1 ×G2 → GT as follows.

• We now have three encodings σ1, σ2, σ3 : Z/p→ S for the groups G1,G2,GT respectively.

• Likewise, we now have three oracles for the group laws in each of G1,G2,GT.

• We have an oracle for computing the pairing. That is, if the algorithm has received the
encodings σ1(x) and σ2(y) for x, y ∈ Z/p, it may request from the oracle the encoding σT(xy).

• We also grant the algorithm oracles for computing a homomorphism ψ : G2 → G1. Supposing
without loss of generality that this homomorphism sends g2 to g1, we may say that if the
algorithm has received the encoding σ2(x), then it may request from the oracle σ1(x). Likewise,
we give the algorithm for the reverse homomorphism ψ−1. Note that in practice, such
homomorphisms may not be computable in certain groups, but since granting the adversary
these oracles only makes it stronger, we may do so for our proof.

5 Generic security of the SDH assumption

The main result of Boneh and Boyen is as follows.

Theorem. Suppose A is an algorithm that solves the q-SDH problem in generic bilinear groups of or-
der p, making at most qG oracle queries for the group operations in G1, G2, and GT, the homomor-
phisms x ∈ Z×p , and the bilinear pairing e, all counted together. Suppose also that the integer x ∈ Z×p

5

and the encoding functions σ1, σ2, σT are chosen random. Then, the probability ε, that A on input
(p, σ1(1), σ1(x), . . . σ1(xq), σ2(1), σ2(x)) outputs (c, σ1(

1
x+c)) with c ∈ Zp \ {−x}, is bounded as

ε ≤ (qG + q + e)2(q + 1)
p

≤ O

(
q2

Gq + q3

p

)
.

This theorem implies that if we wish to ensure some constant lower bound on our probability
of success in generic bilinear groups with q < O(3

√
p), then our generic algorithm must make at

least Ω(
√

p/q) queries.

Proof. Our proof will once again take a similar structure, where we allow the adversary to interact
with a set of simulated oracles which make up encodings as they go along and choose the value of
x only at the very end. The simulated oracles work as follows:

• The oracles maintain three lists of pairs, L1 = {(F1,i, σ1,i)}i=1,...,τ1 , L2 = {(F2,i, σ2,i)}i=1,...,τ2 ,
and L3 = {(FT,i, σT,i)}i=1,...,τT . The F1,i and F2,i are polynomials in (Z/p)[X] of degree at most
q, while FT,i are polynomials in (Z/p)[X] of degree at most 2q. The values σ1,i, σ2,i, σT,i are the
“encodings” which are given to the adversary.

• To initialize, we take τ1 = q + 1, τ2 = 2, and τT = 0. We initialize L1 with the pairs (Xi−1, σ1,i)
for i = 1, . . . , q, where each σ1,i is selected uniformly at random from S. Likewise, we initialize
L2 with the pairs (Xi−1, σ2,i) for i = 1, 2.

• The oracles respond to queries according to the following rules:

group operations The same as in the earlier algorithms. If the adversary requests that the
group operation be performed for indices i, j in G1, we set Fi,τ1+1 = F1,i + F1,j. If this is a
polynomial which has already occured at index k (i.e. F1,τ1+1 = F1,k with k ≤ τ1), then

we set σ1,τ1+1 ← σ1,k, otherwise we select σ1,τ1+1
R←− S. We then pass σ1,τ1+1 back to the

adversary and increment τ1. The rules for group operations are equivalent in G2 and
GT.

pairing Suppose the adversary queries result of the pairing with σ1,i and σ2,j. The simulated
oracle sets FT,τT+1 = F1,i · F2,j. If this polynomial already appeared in LT at index k, i.e.
FT,τT+1 = FT,k with k ≤ τT, then we set σT,τT+1 ← σT,k. Otherwise, we choose a random

σT,τT+1
R←− S. We pass σT,τT+1 back to the adversary and increment τT.

homomorphisms Take the case of a homomorphism query from G2 to G1, where the ad-
versary queries with string σ2,i. The simulated oracle sets F1,τ1+1 = F2,i. If L1 already
contained a copy of this polynomial, i.e. F1,τ1+1 = F1,j for some j ≤ τ1, then we set

σ1,τ1+1 ← σ1,k. Otherwise, we choose a random σ1,τ1+1
R←− S. We pass σ1,τ1+1 back to the

adversary and increment τ1.

• Once A terminates and returns a pair (c, σ1,`, we let F1,` be the corresponding polynomial in

L1. Let FT,? = F1,` · (X + c). We select a random x R←− Z/p, then announce that the adversary
has “won” if FT,?(x) = 1, or if there are any two nonequal polynomials in L1 which take the
same value at x, or the same condition in L2 or in L3.

Examining the win condition, note that FT,? = F1,` · (X + c) = F1,` · (F2,2 + c · F2,j). Hence, the
equality FT,?(x) = 1 corresponds to the relation e(A, gx+c

2) = e(g1, g2) where A is the element of G1

6

represented by σ1,`; in this case, the adversary has successfully answered the SDH problem. Hence,
as long has the adversary does not win, the simulated oracles’ outputs are indistinguishable from
those of real oracles in a scenario where the adversary was not successful. Therefore, the probability
that the the A sucessfully solves SDH is bounded above by the probability that it wins the game.

We compute the probability that A wins the game. Since the degree of FT,? is at least 1 and at
most q + 1, we have by the lemma that the probability that FT,?(x) = 1 for uniformly random x
is at most (q + 1)/p. Further, the polynomials in L1, L2, LT are all of degree at most 2q, and so the
probability that any fixed pair in one of the lists is equal at a uniformly random x is at most 2q/p,
again by the lemma. Thus, the probability that A wins is at most((

τ1

2

)
+

(
τ2

2

)
+

(
τT

2

))
2q
p
+

q + 1
p

.

Since each query increments exactly one of τ1, τ2, τT and initially we have τ1 + τ2 + τT = q + 3, we
have that τ1 + τ2 + τT ≤ qG + q + 3, where qG is the number of queries. Hence, the probability ε
that A is successful is bounded by

ε ≤ (qG + q + 3)2(q + 1)
p

≤ O

(
q2

Gq + q3

p

)
,

which is the desired result.

6 Conclusion

We have demonstrated a number of limitations on generic algorithms, even when they are allowed
to compute pairings. These results are helpful on two fronts. First, they inform us that in order to
surpass current known running times on thse problems, we must find a way to take advantage
of specific group properties. Second, they help convince us that our security assumptions are
somewhat reasonable, which allows us to more confidently use them as the basis for cryptographic
schemes. Although they cannot guarantee security since we do not have real-word generic groups,
they help guide our understanding of algorithmic limitations.

7 References

V. Shoup. Lower bounds for discrete logarithms and related problems. EUROCRYPT 1997.

D. Boneh and X. Boyen. Short signatures without random oracles and the SDH assumption
in bilinear groups. EUROCRYPT 2004.

7

