
CS 259C/Math 250: Elliptic Curves in Cryptography
Homework 2 Solutions

1. (a) We are given that the equation for E(d) is

y2 = x3 + Ad2x+Bd3

Dividing by d3 gives
y2

d3
=
x3

d3
+
Ax

d
+B

Which can be rewritten as

d
(y
d2

)2
=
(x
d

)3
+ A

(x
d

)
+B

The the transformation
(
x
d
, y
d2

)
→ (x, y) gives us the desired transformation.

(b) The equation for E is
y21 = x31 + Ax1 +B

Let g be a generator for F×q . Then D = gn
′

for some n′. Since D is not a square,

it must be that n′ is odd, so D = g2n+1 for some n. The equation for E ′ = E(D)

is
Dy22 = x32 + Ax2 +B

Similarly, d = gm
′

for some m′, and the equation for E(d) is

dy23 = x33 + Ax3 +B

There are two cases:

* d is a square. In this case, m′ is even, so we can write d = g2m. Let x1 = x3
and y1 = gmy3. Then:

y21 = g2my23 = dy23 = x33 + Ax3 +B = x31 + Ax1 +B

Thus, the curve is isomorphic to E.

* d is not a square. In this case, m′ is odd, so we can write d = g2m+1. Let
x2 = x3 and y2 = gm−ny3. Then:

Dy22 = g2n+1g2m−2ny23 = g2m+1y23 = dy23 = x33 + Ax3 +B = x32 + Ax2 +B

Thus, the curve is isomorphic to E ′.

1

(c) Let #E(Fq) = q + 1 − t and and #E ′(Fq) = q + 1 − t′. According to a slight
generalization of Theorem 4.14, the number of points in Fq × Fq on the curve
defined by y2 = f(x) is

q + 1 +
∑
x∈Fq

(
f(x)

Fq

)
Where

(
z
Fq

)
is the Legendre symbol (0 if z = 0, 1 if z is a square, and −1

otherwise). Since E is specified by

y2 = x3 + Ax+B,

this means

t = −
∑
x∈Fq

(
x3 + Ax+B

Fq

)
Since E ′ is specified by

y2 =
x3 + Ax+B

D

for a non-square D,

t′ = −
∑
x∈Fq

(
(x3 + Ax+B)/D

Fq

)

Note that if z = 0, so is z/D; if z is a square, z/D is not; and if z is not a square,
z/D is. Therefore,(

x3 + Ax+B

Fq

)
= −

(
(x3 + Ax+B)/D

Fq

)
Summing over all x ∈ Fq gives us t = −t′, as desired.

(d) Recall that
#E(Fqn) = (qn + 1)− (αn + βn)

Where α and β are solutions to X2−tX+q = 0. Note that α+β = t and αβ = q.
Thus:

#E(Fq2) = (q2 + 1)− (α2 + β2) = q2 + 1− (α + β)2 + 2αβ

= q2 + 1− t2 + 2q = (q + 1− t)(q + 1 + t) = #E(Fq)#E ′(Fq)

(e)

2

E(Fq)× E ′(Fq) = (Z2 × Z2)× (Z2 × Z4) � Z4 × Z8 = E(Fq2)

Thus we have found a counterexample.

2. Since −1 is a non-square in Fp when p ≡ 3(mod 4), the quadratic twist of E, E ′ can
be given by

−y2 = x3 + Ax

This is equivalent to
y2 = −(x3 + Ax) = (−x)3 + A(−x)

Thus we have an isomorphism between E and E ′ given by x→ −x. Thus, #E(Fp) =
#E ′(Fp). By question 1 part (c), we have

p+ 1− t = #E(Fp) = #E ′(Fp) = p+ 1 + t

So t = 0. This means #E(Fp) = p+ 1, and therefore E is supersingular.

3. (a) Recall that φ satisfies the equation X2 − tX + p = 0, where #E(Fp) = p+ 1− t.
Since E is supersingular, #E(Fp) = p+1, so t = 0. Hence φ2+p = φ2+tφ+p = 0.

(b) If (x, y) ∈ E[p + 1], then [p + 1](x, y) = 0, or subtracting [p](x, y) gives (x, y) =
[−p](x, y). But according to part (a), φ2(x, y) = [−p](x, y). Thus, if (x, y) ∈
E[p+ 1], φ2(x, y) = [−p](x, y) = (x, y), so φ2 is the identity on E[p+ 1].

(c) As mentioned above, t = 0. Thus #E ′(Fp) = q + 1 + t = q + 1. This means

#E(Fp2) = #E(Fp)#E ′(Fp) = (p+ 1)(p+ 1) = p2 + 2p+ 1

(d) According to Lemma 4.5, since φ2 (which is the Frobenius endomorphism for Fp2)
is the identity on all points in E[p+1], E[p+1] ⊂ E(Fp2). According to Theorem
3.1,

E[p+ 1] = Zp+1 × Zp+1

Meaning that E[p + 1] has (p + 1)2 = p2 + 2p + 1 elements, the same as E(Fp2).
Thus

E(Fp2) = E[p+ 1] = Zp+1 × Zp+1

3

(e) The fact given reads: For any n ≥ 2, p - n, if E[n] ⊂ E(Fp), then n|(p − 1).
Theorem 4.1 tells us that

E(Fp) = Zn1 × Zn2

Where n1 divides n2. If n1 = 1 we are done. Otherwise, since #E(Fp) = p + 1,
we have n1n2 = p+ 1, and thus n1|(p+ 1). Also, E[n1] = Zn1 ×Zn1 is a subset of
E(Fp). But now, according to the fact, n1 divides p− 1. The only way for n1 6= 1
to divide both p − 1 and p + 1 is for n1 to be 2. This proves the p ≡ 3(mod 4)
case.

If p ≡ 1(mod 4), then p+ 1 ≡ 2(mod 4). This means that p+ 1 is even, but it is
not divisible by 4. However, if n1 = 2, then 2|n2, so p + 1 = n1n2 is divisible by
4. Therefore, n1 = 1 is the only possibility, so E(Fp) is cyclic.

4. (a) (1+α)(x, y) = (x, y)+α(x, y) = (x, y)+(−x, iy). Using the group law for elliptic
curves, (1 + α)(x, y) = (x1, y1) where:

x1 = m2 − x+ x = m2

y1 = m(x− x3) + y

m =
iy − y
−x− x

=
1− i

2

y

x

Thus,

(1 + α)(x, y) =

((
1− i

2

)2
y2

x2
,
1− i

2

y

x

(
x−

(
1− i

2

)2
y2

x2

)
− y

)

=

(
− i

2

y2

x2
,

(
1− i

2
−
(

1− i
2

)3
y2

x3
+ 1

)
y

)

=

(
− i

2

x3 + Ax

x2
,

(
3− i

2
+

1 + i

4

x3 + Ax

x3

)
y

)
=

(
− i

2

x2 + A

x
,
1 + I

4

(3− 4i)x2 + A

x2
y

)
Therefore, 1 + α has degree 2.

(b) We can compute the kernel in two ways. The first is to notice that the only (finite)
points that map to infinity according to the calculation in part (a) are those with
x = 0. This implies y = 0. Thus, the kernel is {∞, (0, 0)}. Alternatively, we can
observe that (x, y) is in the kernel of 1 +α if α(x, y) = −(x, y). This is equivalent
to

(−x, iy) = (x,−y)

This implies 2x = 0. Since we are not in characteristic 2, we must have x = 0,
which implies y = 0. Thus the kernel is {∞, (0, 0)}

(c) Proposition 3.16 reads:

deg(a′α′ + b′β′) = a′2 degα′ + b′2 deg β′ + a′b′(deg(α′ + β′)− degα′ − deg β′)

4

Setting a′ = a, α′ = 1, b′ = b, β′ = α gives us:

deg([a]+[b]α) = deg(a[1]+bα) = a2 deg 1+b2 degα+ab(deg(1+α)−deg 1−degα

We compute deg(1 + α) in part (a) to be 2, and degα = 1 and deg 1 = 1 since
they are linear. Thus:

deg([a] + [b]α) = a2 + b2 + ab(2− 1− 1) = a2 + b2

(d) Note that α is an endomorphisms, so it commutes with [n] for all n. Also note
that α2(x, y) = α(−x, iy) = (x,−y) = −(x, y). Thus,

([a]− [b]α)([a] + [b]α) = [a]2 + [a][b]α− [b]α[a]− [b]α[b]α = [a2] + [b2] = [a2 + b2]

This means that if φa,b = [a] + [b]α and ψa,b = [a]− [b]α, then ψa,bφa,b = [a2 + b2].
Similarly, φa,bψa,b = [a2 + b2]

5. (a) Let P1, Q1 be generators for E(Fp) ∼= Z26 × Z26. We can infer that P1 and Q1

have order 26, since otherwise, E(Fp) would not be isomorphic to Z26×Z26. The
subgroup of elements of order 13 will then be generated by P = 2P1, Q = 2Q1.
There will be 132 = 169 elements generated by P and Q. According to Theorem
3.2, since 677 - 13, E[13] ∼= Z13×Z13, which has 132 = 169 elements. This means
all the elements of order 13 are in fact in E(Fp), and thus a pair for generators
for E[13] is given by P,Q. Here is the sage code for this:

(b) Note that α was defined as α(x, y) = (−x, iy), where i is a square root of −1.
We note that −1 ≡ 676 in F677, and 262 = 676. Thus, the square roots of −1 lie
in F677, and hence α is an automorphism on E(Fp). We can use Sage to list the
automorphisms:

Notice that the first automorphisms is the identity, and the last is the inverse au-
tomorphisms. Thus, the other two must correspond to our αs (one for i = −26 =

5

651, the other for i = 26). We can choose either one to be our automorphism. I
will chose the first.

To compute the action of α, we simply compute α(P) and α(Q), and iterate over
all linear combinations of P and Q until we find the combinations equal to α(P)
and α(Q). Here is the code:

(c) Again, Sage provides the answer:

Since 12 = −1 in F13, this is the desired answer.

(d) We can use Sage to compute the eigensystem:

This tells us that the eigenvalues are 5 and 8 (which square to −1 in F13),
and also tells us what the corresponding eigenvectors are. We can then define
PP and QQ using this information, and check that they are eigenvectors of α:

6

6. (a) Suppose there is an algorithm A that has advantage ε in the semantic security
game. Define two algorithms, A0 and A1, which play the real-or-zero game. Ab
works as follows: on input pk, simulate A on pk. When A produces a challenge
query (m0,m1), submit m = mb are the challenge query to the real-or-zero chal-
lenger. Send the response c back to A. When A outputs a bit b′, Ab returns b′.
Observe that

Pr[A(pk, c) = 1 : c← Encpk(mb)] = Pr[Ab(pk, c) = 1 : c← Encpk(m)]

Also, note that

Pr[A0(pk, c) = 1 : c← Encpk(0)] = Pr[A1(pk, c) = 1 : c← Encpk(0)]

Then we have:

ε = |Pr[A(pk, c) = 1 : c← Encpk(m0)]− Pr[A(pk, c) = 1 : c← Encpk(m1)]|
= |Pr[A0(pk, c) = 1 : c← Encpk(m)]− Pr[A1(pk, c) = 1 : c← Encpk(m)]|
= |Pr[A0(pk, c) = 1 : c← Encpk(m)]− Pr[A0(pk, c) = 1 : c← Encpk(0)]

+ Pr[A1(pk, c) = 1 : c← Encpk(0)]− Pr[A1(pk, c) = 1 : c← Encpk(m)]|
≤ ||Pr[A0(pk, c) = 1 : c← Encpk(m)]− Pr[A0(pk, c) = 1 : c← Encpk(0)]|

+ |Pr[A1(pk, c) = 1 : c← Encpk(0)]− Pr[A1(pk, c) = 1 : c← Encpk(m)]|
= ε0 + ε1

Where εb is the advantage of Ab. At least one b has εb ≥ ε
2
, so let A′ = Ab for

that b. Then A′ has advantage at least ε/2.

(b) Suppose there is an adversary A′ that has advantage ε in the real-or-zero game.
Define A to be the following algorithm: on input pk, simulate A′ on pk. When
A′ produces the challenge query m, set m0 = m, and m1 = 0, and send (m0,m1)
to the semantic security challenger. Send the response c back to A′. When A′
produces a bit b′, output b′. We have that:

Pr[A(pk, c) = 1 : c← Encpk(m0)] = Pr[A′(pk, c) = 1 : c← Encpk(m)]

Pr[A(pk, c) = 1 : c← Encpk(m1)] = Pr[A′(pk, c) = 1 : c← Encpk(0)]

7

Thus,

ε = |Pr[A′(pk, c) = 1 : c← Encpk(m)]− Pr[A′(pk, c) = 1 : c← Encpk(0)]|
= |Pr[A(pk, c) = 1 : c← Encpk(m0)]− Pr[A(pk, c) = 1 : c← Encpk(m1)]|

Which is exactly the advantage of A. Therefore, A has advantage ε.

(c) E ′ is just E with a zero appended to the end. Let A be an adversary with
advantage at least ε against E ′. Let B be the following algorithm that breaks E :
on input pk, simulate A on pk. When A produces the challenge query, B forwards
that query to its challenger. When the challenger responds with a ciphertext
c, B responds to A with c||0. When A outputs b′, B outputs b′. It is clear
that when c ← Encpk(m), then c||0 is distributed according to Enc′pk(m) Hence,
Pr[A(pk, c) = 1 : c ← Enc′pk(mb) = Pr[B(pk, c) = 1 : c ← Encpk(mb)] It easily
follows that B has the same advantage as A.

(d) The idea here is that a random element of the ciphertext space is not the same
as an encryption of a random message from the message space, as in the real-
or-random game. It is actually distributed quite differently as the last bit of a
random element of the ciphertext space is 0 or 1 with equal probability, but the
encryption of any message always ends in a 0. Thus, we get a simple adversary
for E ′: on input pk, send 0 as the challenge query. When the challenger responds
with c||b′, return b′. The advantage of A is:

∣∣Pr[A(pk, c) = 1 : c← Enc′pk(0)]− Pr[A(pk, c) = 1 : c← C]
∣∣ =

∣∣∣∣0− 1

2

∣∣∣∣ =
1

2

7. First, we need to show that we can always detect if an element x is a square in G.
To do this, compute xr, and check if it equals 1. If x is a square, then x = g2a for
some a, so xr = (g2r)a = 1. If x is not a square, then x = g2a+1 for some a, so
xr = (g2r)agr = gr 6= 1.

Now, let A(g, x1, x2, x3) be the following algorithm: output 1 if and only if either

– x1 or x2 are squares, and so is x3.

– x1, x2 and x3 are all non-squares.

Now let’s analyse the two cases in the Decisional Diffie-Hellman problem:

– (g, ga, gb, gab) for random a, b ∈ [0, 2r− 1]. If either ga or gb are squares, then a or
b are even, so ab is even, and thus gab is a square. If neither ga or gb are squares,
then both a and b are odd, so ab is odd, and thus gab is not a square. Thus A will
always output 1 in this case.

– (g, ga, gb, gc) for random a, b, c ∈ [0, 2r−1]. gc will be a square or non-square with
probability 1

2
, independent of ga and gb. Thus the probability that A outputs 1

is exactly 1
2
.

8

Hence, the advantage of A in the Decisional Diffie-Hellman problem is exactly 1
2
.

In general, if the order of G factors as fr′ for some small prime factor f , we can always
test if an element x has an fth root by checking if xr

′
= 1. Then, we can write an

algorithm A(g, x1, x2, x3) which checks if either x1 or x2 have fth roots and x3 has
an fth root, or if none of them do. When the input is (g, ga, gb, gab), the output will
always be 1. When the input is (g, ga, gb, gc), it can be shown that the probability A
outputs 1 is less than or equal to 1− 1

f
for all f ≥ 2. Thus, A has advantage 1

f
.

8. (a) Recall that to generate a random point on the curve, we pick a random x ∈ Fp
and compute z = x3 + Ax + B. If z is a square, we output one of the roots.
Otherwise, we start over. We can use this idea to encode an integer n as a point
on the curve: divide the domain of x into buckets, one for each meassage in the
message space. To encode a message m, pick an x from the bucket corresponding
to m. If x3 + Ax + B has a square root y, return (x, y). Otherwise generate
another x in the bucket and try again. If m ∈ [0, N), one approach is to fix an r,
and the bucket corresponding to m is [mr, (m+1)r). We can generate elements in
the bucket in two ways: either iterate through the elements deterministically, or
randomly pick an element. The deterministic way will be a little faster (since we
will not generate the same element twice). However, the random way will make a
brute-force attack more difficult since it expands the number possible ciphertexts
for each message.

The inverse map takes a point (x, y) and returns bx/rc Since x ∈ [mr, (m+ 1)r),
we have that x/r ∈ [m,m+ 1), so taking the floor gives m, as desired.

We need to pick r large enough so that each bucket has at least one x that gives
rise to a point on the curve. Since there are N buckets of size r, we need Nr ≤ p.
Hence we can choose r =

⌊
p
N

⌋
. We get the following algorithm:

Note that E.lift x takes a value x, and tries to generate points (x, y) on E. The
second argument specifies whether or not to generate the entire list of points, or
just one point (if it exists).

(b)

9

Note that x.lift() takes x (which is an element of Fq), and returns the equivalent
integer in Z.

(c)

(d)

(e) This is the NIST P-192 curve. It was chosen because the group order is large and
prime, and P has the same order as the group. Also, the field size p is chosen so
that arithmetic in Fp is very fast. For example, reductions mod p can be computed
at the level of 64-bit words. For more information, go to this site and download
fips 186-3.pdf. The curve is defined on page 88.

9. The Schnorr signatures will be:

– (R, s) = ([ki]P, ki + ae(mod r))

– (R′, s′) = ([ki+1]P, ki+1 + ae′(mod r)

Where e = H(M ||R) and e′ = H(M ′||R′), M , and M ′ are the two signed messages,
and ki, ki+1 is our bad randomness. Since ki+1 = Aki +B, we have

s′ = Aki +B + ae′(mod r)

Thus, assuming Ae 6= e′(mod r), we have

As+B − s′

Ae− e′
=
A(ki + ae) +B − (Aki +B + ae′)

Ae− e′
=
a(Ae− e′)
Ae− e′

= a(mod r)

If Ae = e′(mod r), then AH(M ||R) = H(M ′||R′) mod r. If M 6= M ′, then the inputs
are different, so the outputs satisfy Ae = e′ with probability 1/r assuming a truly
random oracle H. If M = M ′, then the inputs are different (R 6= R′) with probability
1 − 1/r. In this case, the outputs satisfy Ae = e′ with probability 1/r. Thus the
probability that we succeed is at least (1−1/r)2. Either way, the probability is at least
(1− 1/r)2, which is very close to 1.

10

http://csrc.nist.gov/publications/PubsFIPS.html

