
CS 259C/Math 250: Elliptic Curves in Cryptography

Homework #2

Due October 26, 2011

Solutions must be handed in in class, handed to Mark (494 Gates), or emailed to Mark (zhandry
at cs.stanford.edu) by 4pm on the due date. Your solution to problem 8 must be saved as a SAGE
worksheet and emailed to Mark.

Use of SAGE is allowed on any problem. If you use SAGE you must show your work by attaching
your computations to the solutions you turn in. Use of LaTeX is encouraged but not required.

Elliptic curves over finite fields

1. (10 points) Quadratic twists. Let E : y2 = x3 + Ax + B be an elliptic curve over a field
K with charK 6= 2, 3. For d ∈ K×, the quadratic twist of E by d is the curve E(d) : y2 =
x3 +Ad2x+Bd3.

(a) Show that E(d) can be transformed over K to the form dy21 = x31 +Ax1 +B.

Now let K = Fq be a finite field with 2, 3 - q, fix a non-square D ∈ F×q , and let E′ = E(D).

(b) Show that for any d ∈ F×q , the quadratic twist of E by d is isomorphic over Fq to either
E or E′. We can thus call E′ the quadratic twist of E.

(c) Suppose that #E(Fq) = q+ 1− t. Show that #E′(Fq) = q+ 1 + t. (Hint: Use part (1a)
and Theorem 4.14 of Washington.)

(d) Show that #E(Fq2) = #E(Fq) ·#E′(Fq).

(e) Give a counterexample to show that it is not true in general that E(Fq2) ∼= E(Fq)×E′(Fq)
as abelian groups.

2. (4 points) Counting points. Suppose p ≡ 3 (mod 4), and let E/Fp be given by y2 =
x3 + Ax. Use the previous exercise and the fact that −1 is not a square in Fp to show that
#E(Fp) = p + 1, and therefore E is supersingular. (Hint: For a given x 6= 0, exactly one of
x3 +Ax and −x3 −Ax is a square in Fp. Use this to deduce that #E(Fp) = #E(−1)(Fp).)

3. (10 points) Supersingular curves. Let E be a supersingular elliptic curve defined over Fp

with p ≥ 5 prime. Let φ be the p-Frobenius endomorphism on E.

(a) Show that φ2 + p = 0 as endomorphisms.

(b) Show that φ2 acts as the identity on E[p+ 1], and therefore that E[p+ 1] ⊂ E(Fp2).

(c) Show that #E(Fp2) = p2 + 2p+ 1.
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(d) Show that E(Fp2) ∼= Zp+1 × Zp+1.

It follows from Washington Corollary 3.11 that for any n ≥ 2 not divisible by p, if E[n] ⊂
E(Fp) then n divides p− 1. Use this fact to show the following:

(e) If p ≡ 1 (mod 4), then E(Fp) is cyclic. If p ≡ 3 (mod 4), then E(Fp) is either cyclic or
isomorphic to Z(p+1)/2 × Z2.

By the results of problem 1, we have found a case where E(Fp2) ∼= E(Fp)× E′(Fp).

4. (8 points) Complex multiplication. Let E be an elliptic curve given by y2 = x3 +Ax over
Fp, with p ≥ 3 prime. Let i be a square root of −1 (in either Fp or Fp2) and let α be the
automorphism of E given by α(x, y) = (−x, iy).

(a) Compute deg(1 + α).

(b) What is the kernel of 1 + α?

(c) For integers a, b, let φa,b be the endomorphism [a] + [b]α. Use Washington Proposition
3.16 to show that deg(φa,b) = a2 + b2 for all a, b ∈ Z.

(d) Show that for any a, b ∈ Z, there is an endomorphism ψa,b such that for all P ∈ E(Fp)
we have

ψa,b(φa,b(P )) = φa,b(ψa,b(P )) = [a2 + b2]P.

The endomorphism ψa,b is the dual of φa,b.

If p ≡ 1 (mod 4), then every endomorphism of E is of the form [a] + [b]α for some a, b ∈ Z.
We define addition of endomorphisms by setting (β1 +β2)(P ) = β1(P ) +β2(P ) and we define
multiplication of endomorphisms by setting (β1β2)(P ) = β1(β2(P )). With this structure
End(E) is a ring. Since α2 = [−1], for the curve in question we have a ring isomorphism

End(E) ∼= Z[i] = {a+ bi : a, b ∈ Z; i2 = −1}.

We say that E has complex multiplication by Z[i]. The dual endomorphism corresponds to
the ring element obtained via complex conjugation. The degree function corresponds to the
norm map from Z[i] to Z given by z 7→ |z|2.

5. (5 points) The action of an endomorphism. Let p = 677 and E/Fp be given by y2 = x3+x.
The SAGE command E.abelian group() shows that E(Fp) ∼= Z26 × Z26.

(a) Give a basis for E[13].

(b) Give the matrix α13 for the action of the endomorphism α (from the previous exercise)
with respect to your basis of E[13].

(c) Show that (α13)
2 =

(−1 0
0 −1

)
as matrices over F13.

(d) (Bonus, 2 points.) Compute eigenvectors for the action of α on E[13]. Specifically, give
points T1, T2 ∈ E[13] such that α(Ti) = [λi]Ti where λi are the two square roots of −1
in F13.
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Elliptic curve cryptography

6. (12 points) Definitions of semantic security. Let E = (Gen,Enc,Dec) be an encryption
scheme. In class we defined semantic security as follows. Let A be an adversary that plays
the following game with a challenger:

• The challenger computes (pk, sk)← Gen() and sends pk to the adversary.

• The adversary computes messages m0,m1 of the same length and sends them to the
challenger.

• The challenger chooses a bit b ∈ {0, 1}, computes c ← Enc(pk,mb), and sends c to the
adversary.

• The adversary outputs a bit b′ ∈ {0, 1}.

We define the semantic security advantage of A to be

SS-Adv(A, E) =
∣∣Pr[A(pk, c) = 1 : c = Encpk(m0)]− Pr[A(pk, c) = 1 : c = Encpk(m1)]

∣∣.
We say that E is ε-semantically secure if for all efficient adversaries A, SS-Adv(A, E) < ε.

Suppose that the message space M contains a distinguished element ‘0’. Consider the fol-
lowing modification of the security game:

• The challenger computes (pk, sk)← Gen() and sends pk to the adversary.

• The adversary computes m ∈M and sends it to the challenger.

• The challenger chooses a bit b ∈ {0, 1}. If b = 0 the challenger computes c← Enc(pk, 0),
while if b = 1 the challenger computes c ← Enc(pk,m). The challenger then sends c to
the adversary.

• The adversary outputs a bit b′ ∈ {0, 1}.

We define the real-or-zero advantage of A to be

RZ-Adv(A, E) =
∣∣Pr[A′(pk, c) = 1 : c = Encpk(0)]− Pr[A′(pk, c) = 1 : c = Encpk(m)]

∣∣.
We say that E is ε′-RZ-secure if for all efficient adversaries A′, RZ-Adv(A′, E) < ε′.

We will now show that RZ-security is equivalent to semantic security, up to a small constant
factor.

(a) Show that if there is an adversary A that plays the semantic security game such that
SS-Adv(A, E) ≥ ε, then there is an adversary A′ that plays the RZ-security game such
that RZ-Adv(A′, E) ≥ ε/2.

(b) Show that if there is an adversaryA′ that plays the RZ-security game such that RZ-Adv(A′, E) ≥
ε, then there is an adversaryA that plays the semantic security game such that SS-Adv(A, E) ≥
ε.

Now suppose that the ciphertext space C always admits an efficient sampling algorithm.
Consider the following modification of the security game:

• The challenger computes (pk, sk)← Gen() and sends pk to the adversary.
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• The adversary computes m ∈M and sends it to the challenger.

• The challenger chooses a bit b ∈ {0, 1}. If b = 0 the challenger samples c← Enc(pk,m),

while if b = 1 the challenger computes c
R← C.1 The challenger then sends c to the

adversary.

• The adversary outputs a bit b′ ∈ {0, 1}.

We define the real-or-random ciphertext advantage of A to be

RRC-Adv(A, E) =
∣∣Pr[A(pk, c) = 1 : c = Encpk(m)]− Pr[A(pk, c) = 1 : c

R← C]
∣∣.

We say that E is ε-RRC-secure if for all efficient adversaries A, RRC-Adv(A, E) < ε.

We will now show that RRC-security is not equivalent to semantic security. Let E =
(Gen,Enc,Dec) be an ε-semantically secure encryption scheme. Suppose Enc outputs cipher-
texts in {0, 1}n. Define an encryption scheme E ′ = (Gen′,Enc′,Dec′) as follows:

• Gen′ runs Gen and outputs pk, sk.

• Enc′ on input m computes c ← Encpk(m) and outputs c′ = c‖0 ∈ {0, 1}n+1 (i.e., c
concatenated with a zero bit).

• Dec′ on input c′ = c|b with c ∈ {0, 1}n and b ∈ {0, 1} outputs Decsk(c).

(c) Show that E ′ is ε-semantically secure. Specifically, show that if there is an adversary A
such that SS-Adv(A, E ′) ≥ ε, then there is an adversary B such that SS-Adv(B, E) ≥ ε.

(d) Show that E ′ is not not ε-RRC-secure for any ε ≤ 1/2. Specifically, give an algorithm A
such that RRC-Adv(A, E ′) = 1/2.

7. (4 points) Decision Diffie-Hellman. Let G be an abelian group of order 2r where r is
prime, and let g be a generator of G (i.e., an element of order 2r). Show that the DDH
problem is not hard in G, by exhibiting an algorithm A that can distinguish {g, ga, gb, gab}
from {g, ga, gb, gc} with advantage 1/2 for random a, b, c ∈ [0, 2p− 1].

Specifically, define your algorithm A to take as input four elements of G and output 0 or 1,
and show that when a, b, c are uniformly random in [0, 2p− 1], we have∣∣∣Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]

∣∣∣ =
1

2
.

(More generally, the DDH problem in G is only as hard as the problem in the smallest prime-
order subgroup of G. In contrast, the discrete log problem in G is as hard as the problem
in the largest prime-order subgroup of G. Thus the assumption that DDH is infeasible in G
appears to be significantly stronger than the assumption that discrete log is infeasible in G.)

8. (10 points) ElGamal encryption. The goal of this exercise is to encrypt your name using
the ElGamal cryptosystem. Let p = 2192 − 264 − 1. Let E be the elliptic curve over Fp given
by

E : y2 = x3 − 3x+ 2455155546008943817740293915197451784769108058161191238065.

1The notation x
R← X means that the variable x is chosen to be a uniformly random element of the set X.
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Let (P,Q) be an ElGamal public key given by

P = (602046282375688656758213480587526111916698976636884684818,

174050332293622031404857552280219410364023488927386650641)

Q = [a]P = (3663963113969291544469926280538612298367383514202028986922,

1042131040378490833378905612228666552957404825004815884320)

The SAGE worksheet “Homework2” (available on the course website) has E, P , and Q
already entered. The worksheet also has functions str to int and int to str that use
base 36 notation to convert (alphanumeric, case-insensitive) strings of length n to integers in
[0, 36n), and vice versa.

(a) Write a function int to point(n,E) that takes an integer n ∈ [0, 3625] and returns a
point on the curve E.

(b) Write a function point to int(P) that takes a point P on E and returns an integer,
such that for n in [0, 3625] we have

point to int(int to point(n, E)) = n.

Use the function test inverses in the worksheet to verify your work.

(c) Write a function encrypt(P,Q,s) that computes the encryption of the string s using
the ElGamal public key (P,Q). Make sure your function does not leak the randomness
used in the encryption!

(d) Compute an encryption of your name using your encrypt function. (If your name is
longer than 25 characters, use the first 25 characters only.)

(e) (Bonus, 2 points.) How did I choose the curve E and the point P? (Hint: Google knows
the answer.)

9. (4 pionts) Consequences of bad randomness. Suppose the random values k used by the
signer in the Schnorr signature scheme are generated using the linear congruential generator
ki+1 = Aki + B (mod r) for some 1 ≤ A,B < r (recall r is the order of the group in which
computations are done). Suppose an adversary knows A and B and sees two messages m and
m′ and signatures (R, s) and (R′, s′) on m and m′, respectively, that were generated using
consecutive outputs ki and ki+1 of the generator. Show how the adversary can determine
(with high probability) the secret key a.
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