
CS 259C/Math 250: Elliptic Curves in Cryptography

Homework #4

Due November 30, 2011

Solutions must be handed in in class, handed to Mark (494 Gates), or emailed to Mark (zhandry
at cs.stanford.edu) by 4pm on the due date.

Use of SAGE is allowed on any problem. If you use SAGE you must show your work by attaching
your computations to the solutions you turn in. Use of LaTeX is encouraged but not required.

1. (8 points) Multi-user encryption. In this problem we will convert Joux’s three-way key
exchange protocol into a “multi-user” encryption scheme.

Let E/Fp be a supersingular elliptic curve with P ∈ E(Fp) a point of (prime) order n. Let
G = 〈P 〉 and define the modified Weil pairing ê : G×G→ µn ⊂ F×

p2
as in class. (In particular,

ê(P, P ) is a generator of µn.) We assume that pp = (E, ê, P ) are public parameters known to
everyone in the system.

Suppose Alice and Bob execute their parts of the three-way key exchange protocol. Specif-

ically, Alice chooses a
R← [1, n] and publishes QA = [a]P , while Bob chooses b

R← [1, n] and
publishes QB = [b]P .

(a) Show how a third party can encrypt a message M ∈ µn to Alice and Bob simultane-
ously. Specifically, give an encryption algorithm Enc(pp, QA, QB,M) and a decryption
algorithm Dec(pp, sk, C) that satisfy the following correctness property

Dec(pp, a, Enc(pp, QA, QB,M)) = Dec(pp, b, Enc(pp, QA, QB,M)) = M.

(Hint: Construct a variant of Boneh-Franklin IBE that doesn’t use any hash functions.)

(b) Prove that if the BDDH assumption holds for G, then the system in (1a) is semantically
secure against any attacker not knowing a or b. Specifically, suppose you are given a
BDDH challenge P, aP, bP, cP, γ and an adversary A that can distinguish the encryp-
tion of a chosen message M from the encryption of a random message M ′. Design an
algorithm B that uses A as a subroutine and decides whether γ = ê(P, P )abc.

If we had a more powerful map, we could extend this functionality to more than two receivers.
Specifically, suppose that we had a nondegenerate, symmetric, `-linear map ẽ : G` → µn. In
particular, ẽ satisfies

ẽ([c1]P, . . . , [c`]P ) = ẽ(P, . . . , P )c1···c` .
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(c) Suppose that ` parties each choose some ai
R← [1, n] and publish Qi = [ai]P . Let M ∈ µn

be a message. Generalize your system from above: give Enc and Dec algorithms such that
any party can use her secret key and the public information to decrypt the ciphertext.
(You do not need to give a security proof.)

(d) (Bonus, 2 points.) Modify the `-party system to allow encrypting to subsets of users.
Specifically, describe a modified set of public parameters and give an Enc algorithm that
takes the public information, a subset S ⊂ {1, . . . , `}, and a message M , and outputs a
ciphertext C. Give a Dec algorithm that takes the public information and a user’s secret
key ai and outputs a message. The correctness condition is that for any S ⊂ {1, . . . , `},
if i ∈ S then

Dec(pp, ai, Enc(pp, {Qi}, S,M)) = M.

You do not need to provide a security proof, but you should make sure there is no obvious
way for the users outside of S to combine their secret keys to decrypt the message. (Hint:
consider adding random points Ri to the public parameters.)

The `-party construction requires an efficiently computable `-linear map between groups
where the discrete logarithm problem is hard. Unfortunately, the largest ` for which we know
how to construct such a map is ` = 2!

2. (6 points) Signatures from IBE. Moni Naor observed that any IBE scheme can be converted
to a signature scheme: the signature σ on a message m is the IBE secret key corresponding
to id = m, and to verify a signature we test whether the given key σ can decrypt the IBE
encryption of a random message.

Specifically, suppose that E = (Setup,Extract,Enc,Dec) is an IBE scheme. We construct a
signature scheme S as follows:

• Gen(): Run the IBE Setup algorithm to obtain public parameters pp and a master key
mk. Output pkS = pp and skS = (pp,mk).

• Sign(skS ,m): Interpret skS as an IBE master key mk and public parameters pp, and
interpret the message m as an identity id. Output σ ← Extract(pp,mk, id).

• Verify(pkS ,m, σ): Interpret pkS as IBE public parameters pp, interpret m as an identity
id, and interpret σ as an IBE secret key skid. Choose a random message m̃ in the IBE
message space. Output “accept” if

Dec(pp, Enc(pp, id, m̃), skid) = m̃.

Output “reject” otherwise.

Show that if E is a semantically secure IBE scheme, then S is a secure signature scheme.
Specifically, assume that there is a signature adversary A that outputs a valid forgery for S
with probability ε. Construct an IBE adversary B that uses A as a subroutine and breaks E
with advantage ε−1/r, where r is the size of the message space for E . You will need to show:

• how B responds to A’s signature queries;

• how B uses A’s forgery to distinguish the encryption of a chosen message M from that
of a random message M ′;
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• that the advantage of B in the IBE security game is ε− 1/r.

Note that you don’t need to worry about any hash function or “random oracles” — you just
need to work with the definitions of security. You may assume that Dec is a deterministic
algorithm that always outputs a message in the IBE message space.

(Bonus, 2 points.) Why must Verify be randomized? Specifically, say where your security
proof fails if we use the following Verify′ algorithm: output “accept” if and only if

Dec(pp, Enc(pp, id, 0), skid) = 0.

3. (8 points) Asymmetric BLS signatures. The asymmetric version of Boneh-Lynn-Shacham
signatures uses an elliptic curve E, two order-n subgroups G1,G2 ⊂ E[n], and a nondegen-
erate, efficiently computable, bilinear map e : G1 × G2 → µn. The proof of security in this
setting requires an efficiently computable isomorphism ψ : G2 → G1. When E is supersingu-
lar we can take G1 = G2 = E[n]∩E(Fp), e to be the modified Weil pairing ê, and ψ to be the
identity map. In this problem we will investigate a candidate for the map ψ on more general
curves.

Let φ be the p-Frobenius endomorphism. For a fixed k ≥ 1, define the trace map Tr by

Tr(P ) =

k−1∑
i=0

φi(P ).

(a) Show that Tr maps points defined over Fpk to points defined over Fp. Specifically, show
that if P ∈ E(Fpk), then Tr(P ) ∈ E(Fp).

Suppose that E(Fp) has a point of prime order n and E has embedding degree k ≥ 2 with
respect to n (i.e., E[n] ⊂ E(Fpk)). Assume n - kp. Recall from Homework 3 that φ has
eigenvalues 1 and p on E[n].

(b) Show that if P ∈ E[n] is an eigenvalue of φ with eigenvalue p, then Tr(P ) =∞. (Hint:
factor pk − 1.)

(c) Show that for any P ∈ E[n] with P 6=∞, the point [k]P − Tr(P ) is an eigenvector of φ
with eigenvalue p.

(d) Let P be a point in E(Fp) of order n, and let G1 = 〈P 〉. For any R ∈ E[n], let GR = 〈R〉.
Show that if R is chosen at random from E[n], then with probability (1− 1/n)2 it holds
that:

• en(P,R) is a generator of µn ⊂ Fqk , and

• Tr: GR → G1 is an isomorphism.

(Here en is the usual Weil pairing.)

4. (10 points) BGN encryption in prime-order groups. In this exercise we show how to
achieve the functionality of the Boneh-Goh-Nissim encryption scheme without using composite-
order groups. Let E/Fp be an elliptic curve and P ∈ E(Fp) a point of prime order n. Define
the following algorithms:

3



• Setup(): Choose random a, b, c
R← [1, n] such that c 6= ab mod n. Define Q = [a]P ,

R = [b]P , S = [c]P . Output the public key pk = (P,Q,R, S) and the secret key
sk = (a, b, c).

• Enc(pk,m): Given a message m ∈ [0, t] for some small t, choose random r
R← [1, n] and

output ([m]P + [r]Q, [m]R+ [r]S).

(a) Give a Dec algorithm that takes a ciphertext (A,B) and outputs m. (Hint: first recover
[m]P , then do a brute-force discrete log calculation.)

(b) Show that if the DDH assumption holds in G1 = 〈P 〉, then E = (Setup,Enc,Dec) is
semantically secure. (Hint: use the “real-or-zero” definition of semantic security from
Homework 2, and emulate the BGN security proof from class.)

(c) Let (A1, B1) and (A2, B2) be encryptions of messages m1,m2 respectively. Give an
algorithm Add that takes the public key pk and the two ciphertexts as input, and outputs
a random encryption of m1 +m2. The output ciphertext should be distributed as if the
message m1 +m2 was encrypted with fresh randomness. Note that Add does not know
either m1 or m2.

(d) Now suppose that P ′ ∈ E(Fpk) is a point of order n such that en(P, P ′) 6= 1. Let
G2 = 〈P ′〉, and let pk′ = (P ′, Q′, R′, S′) and sk′ = (a′, b′, c′) be public and secret keys
obtained by running Setup() using the group G2. Suppose we have

(A,B) = Enc(pk,m) and (C,D) = Enc(pk′,m′).

(Here A,B ∈ G1 and C,D ∈ G2.) Let Mult be an algorithm that takes as input the two
public keys and the two ciphertexts and outputs the tuple (w, x, y, z) ∈ µ4n, where

w = en(A,C), x = en(A,D), y = en(B,C), z = en(B,D).

Show how to recover en(P, P ′)m·m
′

from (w, x, y, z) and the two secret keys sk, sk′.

We conclude that if the DDH assumption holds in G1 and G2, then we have a semantically
secure cryptosystem that encrypts small messages, supports arbitrarily many additions of
encrypted messages, and allows one multiplication of encrypted messages — exactly the func-
tionality of the BGN cryptosystem. (Technically we also need to show how to rerandomize
the tuple (w, x, y, z), but we ignore this for now.)

It is believed that if E is an ordinary (i.e., non-supersingular) elliptic curve, then the DDH
assumption holds in the subgroups G1 and G2 where G1 is the 1-eigenspace of Frobenius (i.e.,
points of order n in E(Fp)) and G2 is the p-eigenspace of Frobenius (i.e., points of order n
with trace zero).

5. (6 points) Pairing-friendly curves. For this problem you will want to consult problem #9
of Homework 3.

(a) Find a field F2d and a supersingular elliptic curve E/F2d of the form y2 + y = x3 + Ax
(with A ∈ F2d) such that

• E(F2d) has a subgroup of prime order r > 2160.
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• E has embedding degree 4 with respect to r.

• The Weil pairing on E[r] takes values in a field of size at least 21000.

(Hint: You should find d and r before starting your search for E.)

(b) Find a field F3d and a supersingular elliptic curve E/F3d of the form y2 = x3 + Ax + 1
(with A ∈ F3d) such that

• E(F3d) has a subgroup of prime order r > 2160.

• E has embedding degree 6 with respect to r.

• The Weil pairing on E[r] takes values in a field of size at least 21000.

(c) Define

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

Find an integer α > 263 such that p(α) and r(α) are both prime. Construct an elliptic
curve E/Fp(α) of the form y2 = x3 + B such that #E(Fp(α)) = r(α). Show that E has
embedding degree 12 with respect to r(α).

This curve is a Barreto-Naehrig curve and is the curve of choice for pairing applications
at the 128-bit security level.
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